Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, , 37 - 48, 24.03.2019
https://doi.org/10.29109/gujsc.475869

Öz

Kaynakça

  • A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83–86, 2007.
  • A. Karalis, J.D. Joannopoulos, M Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Annals of Physics 323 (2008) 34–48.
  • T. Imura, Y. Hori, “Maximizing Air Gap and Efficiency of Magnetic Resonant Coupling for Wireless Power Transfer Using Equivalent Circuit and Neumann Formula,” IEEE Transactions on Industrial Electronics, vol. 58, no. 10, October 2011, pp-4746-4752.
  • J. Yungtaek and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Transactions on Industrial Electronics, vol. 50, no. 3, pp. 520–527, Jun. 2003.
  • K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, J. Murakami, M. Kawase, and T. Satoh, “Power transmission of a desk with a cord-free power supply,” IEEE Transactions on Magnetics, vol. 38, no. 5, pp. 3329–3331, Sep. 2002.
  • S. E. Harris, “Electromagnetically induced transparency,” Phys. Today, vol. 50, no. 7, pp. 36–42, Jul. 1997.
  • A. Kurs, R. Moffatt, and M. Soljacic, “Simultaneous mid-range power transfer to multiple devices,” Appl. Phys. Lett., vol. 96, no. 4, p. 044 102-1-3, 2010.
  • E. Waffenschmidt and T. Staring, “Limitation of inductive power transfer for consumer application,” in Proc. Eur. Conf. Power Electron. Appl., Sep. 2009, pp. 1–10.
  • S. Cheon, Y.-H. Kim, S-Y Kang, M. L. Lee, J.-M. Lee, and T. Zyung, “Circuit-Model-Based Analysis of a Wireless Energy-Transfer System via Coupled Magnetic Resonances,” IEEE Transactions on Industrial Electronics, vol. 58, no. 7, July 2011, pp. 2906-2914.
  • T. C. Beh, M. Kato, T. Imura, S. Oh, Member, IEEE, and Y. Hori, “Automated Impedance Matching System for Robust Wireless Power Transfer via Magnetic Resonance Coupling,” IEEE Transactions on Industrial Electronics, vol. 60, no. 9, September 2013, pp. 3689-3698.
  • Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin, “Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1801–1812, May 2009.
  • I. Villar, U. Iruretagoyena, A. Rujas, A. GarciaBediaga, and I. P. d. Arenaza, “Design and implementation of a SiC based contactless battery charger for electric vehicles,” 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 1294-1300.
  • T. Fujita, T. Yasuda, and H. Akagi, “A moving wireless power transfer system applicable to a stationary system,” 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 4943-4950.
  • A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 544-554, 2011.
  • M. Ibrahim, L. Pichon, L. Bernard, A. Razek, J. Houivet, and O. Cayol, “Advanced Modeling of a 2-kW Series-Series Resonating Inductive Charger for Real Electric Vehicle,” IEEE Transactions on Vehicular Technology, vol. 64, no. 2, pp. 421-430, 2015.
  • N. Liu and T. G. Habetler, “Design of a Universal Inductive Charger for Multiple Electric Vehicle Models,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6378-6390, 2015.
  • S. Wang, D. G. Dorrell, Y. Guo, and M.-F. Hsieh, “Inductive Charging Coupler With Assistive Coils,” IEEE Transactions on Magnetics, vol. 52, no. 7, pp. 1-4, 2016.
  • W. Zhang, J. C. White, A. M. Abraham, and C. C. Mi, “Loosely Coupled Transformer Structure and Interoperability Study for EV Wireless Charging Systems,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6356-6367, 2015.
  • K. Woronowicz, A. Safaee, T. Dickson, and B. Koushki, “Effects of parallel load-side compensation in wireless power transfer," 2015 IEEE Electrical Power and Energy Conference (EPEC), 2015, pp. 369-374.
  • R. A. Deshmukh and D. B. Talange, “Design of 1kW inductive power transfer system for electric vehicle,” 2015 International Conference on Advancements in Power and Energy (TAP Energy), 2015, pp. 93-97.
  • H. Kim, “Coil Design and Measurements of Automotive Magnetic Resonant Wireless Charging System for High-Efficiency and Low Magnetic Field Leakage,” IEEE Transactions on Microwave Theory and Techniques, pp. 1-18, 2016.
  • H. Kim, C. Song, D. H. Kim, and J. Kim, “Design of conductive shield for wireless power transfer system for electric vehicle considering automotive body,” 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), 2015, pp. 1369-1374.
  • G. Rezmerita, L. Bobaru, M. Stanculescu, M. Iordache, and D. Niculae, “A self and mutual inductance calculation resonators with finite element analysis,” 7th InternationalConference on Modern Power Systems, MPS 2017, 2017: Institute of Electrical and Electronics Engineers Inc.
  • T. Yilmaz, N. Hasan, R. Zane, and Z. Pantic, “Multi-Objective Optimization of Circular Magnetic Couplers for Wireless Power Transfer Applications,” IEEE Transactions on Magnetics, vol. 53, no. 8, 2017, Art. no. 7894196.
  • E. Gati, G. Kampitsis, and S. Manias, “Variable Frequency Controller for Inductive Power Transfer in Dynamic Conditions,” IEEE Transactions on Power Electronics, pp. 1-1, 2016.
  • Y. Tang, F. Zhu, Y. Wang, and H. Ma, “Design and optimizations of solenoid magnetic structure for inductive power transfer in EV applications,” 41st Annual Conference of the IEEE Industrial Electronics Society, IECON 2015, 2015, pp. 001459-001464.
  • S. Wang and D. G. Dorrell, “Copper Loss Analysis of EV Charging Coupler,” IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, 2015.
  • G. Buja, M. Bertoluzzo, and K. N. Mude, “Design and Experimentation of WPT Charger for Electric City Car,” IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7436-7447, 2015.
  • G. Xu, X. Yang, Q. Yang, J. Zhao, and Y. Li, “Design on Magnetic Coupling Resonance Wireless Energy Transmission and Monitoring System for Implanted Devices,” IEEE Transactions on Applied Superconductivity, vol. 26, no. 4, pp. 1-4, 2016.
  • F. P. Wijaya and K. Kondo, “Charging power limitation method of a wireless power transmission system for railway vehicle," 41st Annual Conference of the IEEE Industrial Electronics Society, IECON 2015, 2015, pp. 003525-003530

Kablosuz Güç Aktarımı için Karşılıklı Endüktans Hesaplama Aracının Geliştirilmesi

Yıl 2019, , 37 - 48, 24.03.2019
https://doi.org/10.29109/gujsc.475869

Öz

Kablo karmaşıklığını ve cihazlar arasındaki
bağlantı terminali farklılığını ortadan kaldırmayı amaçlayan kablosuz güç
aktarım sistemleri günümüzde cep telefonu, diş fırçası, tıraş makinası ve
elektrikli taşıtlar gibi birçok alanda geniş kullanıma sahiptir. Yapılan
çalışmalar aktarılan güç miktarının ve sistem veriminin alıcı-verici bobinler
arasındaki mesafeyle ters orantılı değiştiğini göstermektedir. Bu sebeple kablosuz
güç aktarım sistemi tasarlanırken alıcı-verici bobinler arasındaki mesafenin hesaba
katılması ve en uygun değerin belirlenmesi gerekmektedir. Bu hesap sonlu
elemanlar analizi yapan ve uzmanlık gerektiren karmaşık yazılımlarla mümkün
olabilmektedir. Bu çalışmada, kullanıcılara kablosuz güç aktarım sistemi
tasarımı yaparken alıcı-verici bobin arasındaki mesafeyle verim ilişkisini analiz
etme imkânı veren, düşük maliyetli, basit kullanımlı karşılıklı endüktans hesaplama
aracı sunulmaktadır. Geliştirilen hesaplama aracı hava nüveli özdeş iki bobin
arasındaki farklı mesafe ve hizalanma değerleri için karşılıklı endüktans ve
bobinlerin öz endüktans değerlerinin hesaplanmasında kullanılabilen benzersiz
bir uygulamadır. Bunlara ilaveten tasarlanan görsel ara yüz sayesinde, bobinlerin
konumu 3-boyutlu koordinat sisteminde değiştirilebilir ve karşılıklı endüktans
değerinin mesafeyle değişimini gösteren eğriler oluşturulabilir.

Kaynakça

  • A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83–86, 2007.
  • A. Karalis, J.D. Joannopoulos, M Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Annals of Physics 323 (2008) 34–48.
  • T. Imura, Y. Hori, “Maximizing Air Gap and Efficiency of Magnetic Resonant Coupling for Wireless Power Transfer Using Equivalent Circuit and Neumann Formula,” IEEE Transactions on Industrial Electronics, vol. 58, no. 10, October 2011, pp-4746-4752.
  • J. Yungtaek and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Transactions on Industrial Electronics, vol. 50, no. 3, pp. 520–527, Jun. 2003.
  • K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, J. Murakami, M. Kawase, and T. Satoh, “Power transmission of a desk with a cord-free power supply,” IEEE Transactions on Magnetics, vol. 38, no. 5, pp. 3329–3331, Sep. 2002.
  • S. E. Harris, “Electromagnetically induced transparency,” Phys. Today, vol. 50, no. 7, pp. 36–42, Jul. 1997.
  • A. Kurs, R. Moffatt, and M. Soljacic, “Simultaneous mid-range power transfer to multiple devices,” Appl. Phys. Lett., vol. 96, no. 4, p. 044 102-1-3, 2010.
  • E. Waffenschmidt and T. Staring, “Limitation of inductive power transfer for consumer application,” in Proc. Eur. Conf. Power Electron. Appl., Sep. 2009, pp. 1–10.
  • S. Cheon, Y.-H. Kim, S-Y Kang, M. L. Lee, J.-M. Lee, and T. Zyung, “Circuit-Model-Based Analysis of a Wireless Energy-Transfer System via Coupled Magnetic Resonances,” IEEE Transactions on Industrial Electronics, vol. 58, no. 7, July 2011, pp. 2906-2914.
  • T. C. Beh, M. Kato, T. Imura, S. Oh, Member, IEEE, and Y. Hori, “Automated Impedance Matching System for Robust Wireless Power Transfer via Magnetic Resonance Coupling,” IEEE Transactions on Industrial Electronics, vol. 60, no. 9, September 2013, pp. 3689-3698.
  • Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin, “Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1801–1812, May 2009.
  • I. Villar, U. Iruretagoyena, A. Rujas, A. GarciaBediaga, and I. P. d. Arenaza, “Design and implementation of a SiC based contactless battery charger for electric vehicles,” 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 1294-1300.
  • T. Fujita, T. Yasuda, and H. Akagi, “A moving wireless power transfer system applicable to a stationary system,” 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 4943-4950.
  • A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 544-554, 2011.
  • M. Ibrahim, L. Pichon, L. Bernard, A. Razek, J. Houivet, and O. Cayol, “Advanced Modeling of a 2-kW Series-Series Resonating Inductive Charger for Real Electric Vehicle,” IEEE Transactions on Vehicular Technology, vol. 64, no. 2, pp. 421-430, 2015.
  • N. Liu and T. G. Habetler, “Design of a Universal Inductive Charger for Multiple Electric Vehicle Models,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6378-6390, 2015.
  • S. Wang, D. G. Dorrell, Y. Guo, and M.-F. Hsieh, “Inductive Charging Coupler With Assistive Coils,” IEEE Transactions on Magnetics, vol. 52, no. 7, pp. 1-4, 2016.
  • W. Zhang, J. C. White, A. M. Abraham, and C. C. Mi, “Loosely Coupled Transformer Structure and Interoperability Study for EV Wireless Charging Systems,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6356-6367, 2015.
  • K. Woronowicz, A. Safaee, T. Dickson, and B. Koushki, “Effects of parallel load-side compensation in wireless power transfer," 2015 IEEE Electrical Power and Energy Conference (EPEC), 2015, pp. 369-374.
  • R. A. Deshmukh and D. B. Talange, “Design of 1kW inductive power transfer system for electric vehicle,” 2015 International Conference on Advancements in Power and Energy (TAP Energy), 2015, pp. 93-97.
  • H. Kim, “Coil Design and Measurements of Automotive Magnetic Resonant Wireless Charging System for High-Efficiency and Low Magnetic Field Leakage,” IEEE Transactions on Microwave Theory and Techniques, pp. 1-18, 2016.
  • H. Kim, C. Song, D. H. Kim, and J. Kim, “Design of conductive shield for wireless power transfer system for electric vehicle considering automotive body,” 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), 2015, pp. 1369-1374.
  • G. Rezmerita, L. Bobaru, M. Stanculescu, M. Iordache, and D. Niculae, “A self and mutual inductance calculation resonators with finite element analysis,” 7th InternationalConference on Modern Power Systems, MPS 2017, 2017: Institute of Electrical and Electronics Engineers Inc.
  • T. Yilmaz, N. Hasan, R. Zane, and Z. Pantic, “Multi-Objective Optimization of Circular Magnetic Couplers for Wireless Power Transfer Applications,” IEEE Transactions on Magnetics, vol. 53, no. 8, 2017, Art. no. 7894196.
  • E. Gati, G. Kampitsis, and S. Manias, “Variable Frequency Controller for Inductive Power Transfer in Dynamic Conditions,” IEEE Transactions on Power Electronics, pp. 1-1, 2016.
  • Y. Tang, F. Zhu, Y. Wang, and H. Ma, “Design and optimizations of solenoid magnetic structure for inductive power transfer in EV applications,” 41st Annual Conference of the IEEE Industrial Electronics Society, IECON 2015, 2015, pp. 001459-001464.
  • S. Wang and D. G. Dorrell, “Copper Loss Analysis of EV Charging Coupler,” IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, 2015.
  • G. Buja, M. Bertoluzzo, and K. N. Mude, “Design and Experimentation of WPT Charger for Electric City Car,” IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7436-7447, 2015.
  • G. Xu, X. Yang, Q. Yang, J. Zhao, and Y. Li, “Design on Magnetic Coupling Resonance Wireless Energy Transmission and Monitoring System for Implanted Devices,” IEEE Transactions on Applied Superconductivity, vol. 26, no. 4, pp. 1-4, 2016.
  • F. P. Wijaya and K. Kondo, “Charging power limitation method of a wireless power transmission system for railway vehicle," 41st Annual Conference of the IEEE Industrial Electronics Society, IECON 2015, 2015, pp. 003525-003530
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Orhan Kaplan 0000-0003-0590-7106

Yayımlanma Tarihi 24 Mart 2019
Gönderilme Tarihi 29 Ekim 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Kaplan, O. (2019). Kablosuz Güç Aktarımı için Karşılıklı Endüktans Hesaplama Aracının Geliştirilmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 7(1), 37-48. https://doi.org/10.29109/gujsc.475869

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526