Eklemeli Üretim İle Elde Edilen Fonksiyonel Kademelendirilmiş Gözenekli İmplantlar
Yıl 2019,
, 540 - 553, 27.09.2019
Fahri Murat
,
İsmail Hakkı Korkmaz
,
Abdullah Tahir Şensoy
İrfan Kaymaz
Öz
Gözenekli yapılar, vücutta kullanılan implant ve
protezler için doku oluşumunun desteklenmesi, gerilme kalkanı ve aseptik
gevşeme problemlerinin giderilmesi gibi üstünlüklerinden dolayı biyomedikal
endüstrisinde giderek artan bir kullanım oranına sahiptir. Homojen yoğunluğa
sahip gözenekli yapıların biyolojik süreçlere olumlu katkıları olsa da, bu
yapılar mekanik açıdan istenen özellikleri sergilemede yetersiz kalmışlardır.
Bu durumda kullanılacak olan implantın biyolojik ve mekanik olarak optimum
tasarımı sunması gerekmektedir. Bahsedilen problemin çözümü için yük taşıyan
ortopedik implant üzerinde doku rejenerasyonu ve mekanik davranışın birbirleriyle
uyumunu sağlayan fonksiyonel kademelendirilmiş yapılar sunulmuştur.
Gözenekliliğin, implantın yük taşıyan kesitlerinde çok yoğun, doku ile temas
eden bölgelerinde ise az yoğun olduğu tasarımlar, eklemeli üretim yöntemleri
ile uygulanabilir hale gelmiştir. Yapılan bu çalışmada gözenekli implantlar,
fonksiyonel kademelendirilmiş gözenekli yapılar ve bu yapıların eklemeli üretim
uygulamalarının bulunduğu literatürdeki son gelişmeler derlenmiştir. Sonuç
olarak eklemeli üretim uygulamalarında biyolojik iyileşme süreçlerini
hızlandırarak mekanik özellikleri geliştirmek için kullanılacak olan gözenekli
implant tasarımları hakkında bir yol haritası sunulmuştur.
Kaynakça
- [1] L. Yuan, S. Ding, ve C. Wen, Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review, Bioactive Materials, c. 4, sy 1, ss. 56-70, Mar. 2019.
- [2] D. Ren vd., Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique, Journal of Materials Science & Technology, c. 35, sy 2, ss. 285-294, Şub. 2019.
- [3] Q.-H. Zhang, A. Cossey, ve J. Tong, Stress shielding in periprosthetic bone following a total knee replacement: Effects of implant material, design and alignment, Medical Engineering & Physics, c. 38, sy 12, ss. 1481-1488, Ara. 2016.
- [4] T. Kusano, T. Seki, Y. Higuchi, Y. Takegami, Y. Osawa, ve N. Ishiguro, Preoperative Canal Bone Ratio is Related to High-Degree Stress Shielding: A Minimum 5-Year Follow-Up Study of a Proximally Hydroxyapatite-Coated Straight Tapered Titanium Femoral Component, The Journal of Arthroplasty, c. 33, sy 6, ss. 1764-1769, Haz. 2018.
- [5] L. E. Murr, Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration, osteoinduction and vascularization: An overview, Journal of Materials Science & Technology, c. 35, sy 2, ss. 231-241, Şub. 2019.
- [6] X. Guangsheng, K. Hongchao, L. Xianghong, L. Fuping, L. Jinshan, ve Z. Lian, Microstructure and Mechanical Properties of Porous Titanium Based on Controlling Young’s Modulus, Rare Metal Materials and Engineering, c. 46, sy 8, ss. 2041-2048, Ağu. 2017.
- [7] V. Karageorgiou ve D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, c. 26, sy 27, ss. 5474-5491, Eyl. 2005.
- [8] H. E. Burton vd., The design of additively manufactured lattices to increase the functionality of medical implants, Materials Science and Engineering: C, c. 94, ss. 901-908, Oca. 2019.
- [9] A. A. Zadpoor, Mechanical performance of additively manufactured meta-biomaterials, Acta Biomaterialia, c. 85, ss. 41-59, Şub. 2019.
- [10] W. E. Frazier, Metal Additive Manufacturing: A Review, Journal of Materials Engineering and Performance, c. 23, sy 6, ss. 1917-1928, Haz. 2014.
- [11] P. K. Gokuldoss, S. Kolla, ve J. Eckert, Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines, Materials, c. 10, sy 6, s. 672, Haz. 2017.
- [12] D. Herzog, V. Seyda, E. Wycisk, ve C. Emmelmann, Additive manufacturing of metals, Acta Materialia, c. 117, ss. 371-392, Eyl. 2016.
- [13] H. Bikas, P. Stavropoulos, ve G. Chryssolouris, Additive manufacturing methods and modelling approaches: a critical review, The International Journal of Advanced Manufacturing Technology, c. 83, sy 1-4, ss. 389-405, Mar. 2016.
- [14] B. Akti̇Mur ve E. S. Gökpinar, Katmanlı Üretimin Havacılıkdaki Uygulamaları, Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım Ve Teknoloji, c. 3, sy 2, ss. 463-469, 2015.
- [15] D. Mahmoud ve M. Elbestawi, Lattice Structures and Functionally Graded Materials Applications in Additive Manufacturing of Orthopedic Implants: A Review, Journal of Manufacturing and Materials Processing, c. 1, sy 2, s. 13, Eki. 2017.
- [16] H. R. Börklü, A. K. Yildirim, ve H. K. Sezer, Hızlı Prototip Oluşturmada Karşılaşılan Problemler Ve Çözüm Önerileri, Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım Ve Teknoloji, c. 4, sy 4, ss. 309-319, 2016.
- [17] D. M. Robertson, L. S. Pierre, ve R. Chahal, Preliminary observations of bone ingrowth into porous materials, Journal of Biomedical Materials Research, c. 10, sy 3, ss. 335-344, 1976.
- [18] H. G. Chuah, I. A. Rahim, ve M. I. Yusof, Topology optimisation of spinal interbody cage for reducing stress shielding effect, Computer Methods in Biomechanics and Biomedical Engineering, c. 13, sy 3, ss. 319-326, Haz. 2010.
- [19] A. A. Fernandez Dell’Oca, S. Tepic, R. Frigg, A. Meisser, N. Haas, ve S. M. Perren, Treating Forearm Fractures Using an Internal Fixator: A Prospective Study, Clinical Orthopaedics and Related Research, c. 389, ss. 196-205, Ağu. 2001.
- [20] B. J. Story, W. R. Wagner, D. M. Gaisser, S. D. Cook, ve A. M. Rust-Dawicki, In vivo performance of a modified CSTi dental implant coating, Int J Oral Maxillofac Implants, c. 13, sy 6, ss. 749-757, Ara. 1998.
- [21] A. Bandyopadhyay, F. Espana, V. K. Balla, S. Bose, Y. Ohgami, ve N. M. Davies, Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants, Acta Biomaterialia, c. 6, sy 4, ss. 1640-1648, Nis. 2010.
- [22] T. Arahira, M. Maruta, S. Matsuya, ve M. Todo, Development and characterization of a novel porous β-TCP scaffold with a three-dimensional PLLA network structure for use in bone tissue engineering, Materials Letters, c. 152, ss. 148-150, Ağu. 2015.
- [23] C. Torres-Sanchez, F. R. A. Al Mushref, M. Norrito, K. Yendall, Y. Liu, ve P. P. Conway, The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds, Materials Science and Engineering: C, c. 77, ss. 219-228, Ağu. 2017.
- [24] K. Harboe, N. R. Gjerdet, E. Sudmann, K. Indrekvam, ve K. Søreide, Assessment of retention force and bone apposition in two differently coated femoral stems after 6 months of loading in a goat model, Journal of Orthopaedic Surgery and Research, c. 9, sy 1, Ara. 2014.
- [25] L. Xia, Y. Xie, B. Fang, X. Wang, ve K. Lin, In situ modulation of crystallinity and nano-structures to enhance the stability and osseointegration of hydroxyapatite coatings on Ti-6Al-4V implants, Chemical Engineering Journal, c. 347, ss. 711-720, Eyl. 2018.
- [26] X. Zhao, X. Wang, H. Xin, L. Zhang, J. Yang, ve G. Jiang, Controllable preparation of SiC coating protecting carbon fiber from oxidation damage during sintering process and SiC coated carbon fiber reinforced hydroxyapatite composites, Applied Surface Science, c. 450, ss. 265-273, Ağu. 2018.
- [27] S. J. Li vd., Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method, Acta Biomaterialia, c. 10, sy 10, ss. 4537-4547, Eki. 2014.
- [28] F. S. L. Bobbert vd., Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties, Acta Biomaterialia, c. 53, ss. 572-584, Nis. 2017.
- [29] X. Wang vd., Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review, Biomaterials, c. 83, ss. 127-141, Mar. 2016.
- [30] F. Liu, D. Zhang, P. Zhang, M. Zhao, ve S. Jafar, Mechanical Properties of Optimized Diamond Lattice Structure for Bone Scaffolds Fabricated via Selective Laser Melting, Materials, c. 11, sy 3, s. 374, Mar. 2018.
- [31] S. Ahmadi vd., Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties, Materials, c. 8, sy 4, ss. 1871-1896, Nis. 2015.
- [32] A. Ataee, Y. Li, D. Fraser, G. Song, ve C. Wen, Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications, Materials & Design, c. 137, ss. 345-354, Oca. 2018.
- [33] C.-C. Chang, S. Zhou, ve Q. Li, Optimization of Effective Diffusivity by Iso-surface Modeling, 10th World Congress on Structural and Multidisciplinary Optimization, s. 6, 2013.
- [34] I. Hernandez, A. Kumar, ve B. Joddar, A Bioactive Hydrogel and 3D Printed Polycaprolactone System for Bone Tissue Engineering, Gels, c. 3, sy 3, s. 26, Tem. 2017.
- [35] S. M. Giannitelli, D. Accoto, M. Trombetta, ve A. Rainer, Current trends in the design of scaffolds for computer-aided tissue engineering, Acta Biomaterialia, c. 10, sy 2, ss. 580-594, Şub. 2014.
- [36] C. Yan, L. Hao, A. Hussein, ve P. Young, Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting, Journal of the Mechanical Behavior of Biomedical Materials, c. 51, ss. 61-73, Kas. 2015.
- [37] B. Levine, A New Era in Porous Metals: Applications in Orthopaedics, Advanced Engineering Materials, c. 10, sy 9, ss. 788-792, Eyl. 2008.
- [38] A. Rahimizadeh, Z. Nourmohammadi, S. Arabnejad, M. Tanzer, ve D. Pasini, Porous architected biomaterial for a tibial-knee implant with minimum bone resorption and bone-implant interface micromotion, Journal of the Mechanical Behavior of Biomedical Materials, c. 78, ss. 465-479, Şub. 2018.
- [39] L. E. Murr, S. M. Gaytan, E. Martinez, F. Medina, ve R. B. Wicker, Next Generation Orthopaedic Implants by Additive Manufacturing Using Electron Beam Melting, International Journal of Biomaterials, c. 2012, ss. 1-14, 2012.
- [40] B. Jetté, V. Brailovski, M. Dumas, C. Simoneau, ve P. Terriault, Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing, Journal of the Mechanical Behavior of Biomedical Materials, c. 77, ss. 58-72, Oca. 2018.
- [41] Xilloc, Total jaw implant | Xilloc, Total Jaw Implant, 2011. [Çevrimiçi]. Erişim adresi: https://www.xilloc.com/patients/stories/total-mandibular-implant/. [Erişim: 14-Ara-2018].
- [42] C. Mertens, H. Löwenheim, ve J. Hoffmann, Image data based reconstruction of the midface using a patient-specific implant in combination with a vascularized osteomyocutaneous scapular flap, Journal of Cranio-Maxillofacial Surgery, c. 41, sy 3, ss. 219-225, Nis. 2013.
- [43] A. L. Jardini vd., Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing, Journal of Cranio-Maxillofacial Surgery, c. 42, sy 8, ss. 1877-1884, Ara. 2014.
- [44] A. R. Studart, Biological and Bioinspired Composites with Spatially Tunable Heterogeneous Architectures, Advanced Functional Materials, c. 23, sy 36, ss. 4423-4436, Eyl. 2013.
- [45] Z. Liu, M. A. Meyers, Z. Zhang, ve R. O. Ritchie, Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications, Progress in Materials Science, c. 88, ss. 467-498, Tem. 2017.
- [46] A. Panesar, M. Abdi, D. Hickman, ve I. Ashcroft, Strategies for functionally graded lattice structures derived using topology optimisation for Additive Manufacturing, Additive Manufacturing, c. 19, ss. 81-94, Oca. 2018.
- [47] E. Garner, H. M. A. Kolken, C. C. L. Wang, A. A. Zadpoor, ve J. Wu, Compatibility in Microstructural Optimization for Additive Manufacturing, s. 12, 2018.
- [48] S. Arabnejad, B. Johnston, M. Tanzer, ve D. Pasini, Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty: FULLY POROUS 3D PRINTED TITANIUM FEMORAL STEM, Journal of Orthopaedic Research, c. 35, sy 8, ss. 1774-1783, Ağu. 2017.
- [49] L. Wang, J. Kang, C. Sun, D. Li, Y. Cao, ve Z. Jin, Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants, Materials & Design, c. 133, ss. 62-68, Kas. 2017.
- [50] T. A. Schaedler ve W. B. Carter, Architected Cellular Materials, Annual Review of Materials Research, c. 46, sy 1, ss. 187-210, 2016.
- [51] D. Li, W. Liao, N. Dai, G. Dong, Y. Tang, ve Y. M. Xie, Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing, Computer-Aided Design, c. 104, ss. 87-99, Kas. 2018.
- [52] D. D. Lima vd., Laser additive processing of a functionally graded internal fracture fixation plate, Materials & Design, c. 130, ss. 8-15, Eyl. 2017.
- [53] M. Dumas, P. Terriault, ve V. Brailovski, Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials, Materials & Design, c. 121, ss. 383-392, May. 2017.
- [54] A. Boccaccio, A. E. Uva, M. Fiorentino, G. Mori, ve G. Monno, Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach, PLOS ONE, c. 11, sy 1, s. e0146935, Oca. 2016.
- [55] X.-Y. Zhang, G. Fang, S. Leeflang, A. A. Zadpoor, ve J. Zhou, Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials, Acta Biomaterialia, c. 84, ss. 437-452, Oca. 2019.
- [56] D. S. J. Al-Saedi, S. H. Masood, M. Faizan-Ur-Rab, A. Alomarah, ve P. Ponnusamy, Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM, Materials & Design, c. 144, ss. 32-44, Nis. 2018.