Doğrusal Olmayan Yük Koşullarında Çalışan Kuru Tip Transformatörlerin Titreşim Etkileri Üzerine Bir Analiz
Yıl 2019,
, 729 - 740, 27.09.2019
Funda Battal
,
İbrahim Sefa
,
Selami Balcı
Öz
Transformatörler
genel olarak doğrusal yüklerde çalıştırılmak üzere tasarlanırlar. Ancak son
yıllarda doğrusal olmayan yüklerin toplam yük içerisindeki oranının artması ile
bu şartlarda çalışabilecek tasarımlara ihtiyaç duyulmaktadır. Transformatör
sargılarından geçen akımların harmonik oranlarının artması ile transformatörün
hem sargılarında hem de nüvelerinde daha fazla ısı oluşmakta ve işletme
veriminin düşmesine yol açmaktadır. Doğrusal olmayan yüklerin diğer önemli bir
etkisi de titreşim genlik değerlerinin büyümesine yol açarak transformatörlerin
nüve ve sargılarının servis ömründe azalmaya yol açmalarıdır. Artan titreşim
genlikleri ve dereceleri hem gürültü kirliliği oluşturur hem de transformatörün
anma değerlerinin değişmesine yol açar. Transformatörlerin arıza teşhis ve
koruma fonksiyonlarının tam olarak yapılabilmesi için sadece akım gerilim gibi
elektriksel ve termal parametreleri ile değil aynı zamanda titreşim gibi
mekanik parametrelerinin de tam ölçülebilmesi ile mümkün olabilmektedir. Bu
nedenle transformatörlerin titreşim sinyallerinin izlenmesi ve değişen çalışma
koşulları altında değişim sınırlarının belirlenmesi gerekmektedir. Bu amaçla,
yapılan çalışmada 500kVA anma gücündeki bir yalıtım transformatörünün doğrusal
olmayan farklı yük şartları altındaki elektromanyetik analizleri yapılarak nüve
kuvvetleri elde edilmiş daha sonra bu değerlere karşılık gelen titreşim
değerleri belirlenmiş ve sonuçları rapor edilmiştir.
Kaynakça
- [1] Ahmad A.A., Abrishamifar A., Jamarani M. E., Designing 3-Phase Inverters with Δ/Y Output Isolation Transformer, The 5th Annual International Power Electronics, Drive Systems and Technologies Conference (PEDSTC 2014), 2014, pp. 223-226.
- [2] Greco N., Parisi A., Palmisano G., Spina N., Ragonese E., Integrated Transformer Modelling for Galvanically Isolated Power Transfer Systems, 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), 2017, pp. 325-328.
- [3] Ertl M., Voss S. The Role of Load Harmonics in Audible Noise of Electrical Tranasformers, Journal of Sound and Vibration, 333(2253-2270), (2014).
- [4] Biricik S., Özerdem Ö. C., Experimental Study and Comparative Analysis of Transformer Harmonic Behaviour under Linear and Nonlinear Load Conditions, 10th International Conference on Environment and Electrical Engineering (EEEIC), 2011.
- [5] Cazacu E., Ionıta V., Petrescu L., Thermal aging of power distribution transformers operating under nonlinear and balanced load conditions, Power Engineering and Electrical Engineering, 16(1), 92-100, (2018).
- [6] Galli W., Skvarenina T. L. (2002). Power Quality and Utility Interface Issues, CRC Press LLC.
- [7] Abu Dhabi Distribution Company, Al Ain Distribution Company, Abu Dhabi Supply Company for Remote Areas (RASCO), Limits for Harmonics in the Electricity Supply System, Engineering Recommendation No.1 of the Electricity Distribution Code, https://www.aadc.ae/img/41f76c6a-90c5-46e4-aabc-1414e6e4896b.pdf. Yayın tarihi 2005. Erişim tarihi: Nisan 28, 2018.
- [8] Fuchs E., Masoum M. (2008). Power Quality in Power Systems and Electrical Machines, Elsevier Science, 19-20.
- [9] Zizins-Malisevs S., Poiss G., Power Transformer Mechanical Condition Assessment with A Vibration-Based Diagnostic Method, 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 2015.
- [10] Berler Z., Golubev A., Rusov V., Tsvetkov V., Vibro-Acoustic Method of Transformer Clamping Pressure Monitoring, In Proceedings of the IEEE International Symposium on Electrical Insulation, 2000, 263-266.
- [11] Xiong W., Ji R., Nonlinear Time Series Analysis of Transformer’s Core Vibration, The Sixth World Congress on Intelligent Control and Automation 2, 2006, pp. 5493 – 5496.
- [12] Borucki S., Time-Frequency analysis of mechanical vibrations of the dry type power transformer core, ACTA PHYSICA POLONICA A, 120 (4), 571-574, (2011).
- [13] Borucki S., Diagnosis of technical condition of power transformers based on the analysis of vibroacoustic signals measured in transient operating conditions, IEEE Transactions on Power Delivery, (27) 2, 670-676, (2012).
- [14] Munir B. S., Smit J. J., Rinaldi I G. M. R., Diagnosing Winding and Core Condition of Power Transformer by Vibration Signal Analysis, International Conference on Condition Monitoring and Diagnosis (CMD), 2012.
- [15] Zheng J., Pan J., Huang H., An experimental study of winding vibration of a single-phase power transformer using a laser doppler vibrometer, Applied Acoustics 87, 30-37, (2015).
- [16] Qian G., Research on Spectrum Eigenvalues of Transformer Vibration and its Application on Diagnosis, IEEE International Conference on Mechatronics and Automation (ICMA), (2016).
- [17] Naranpanawe L., Ekanayake C., Finite Element Modelling of a Transformer Winding for Vibration Analysis, Australasian Universities Power Engineering Conference (AUPEC), (2016).
- [18] Bartoletti C., Desiderio M., Di Carlo D., Fazio G., Muzi F., Sacerdoti G., Salvatori F, Vibro-Acoustic techniques to diagnose power transformers, IEEE Transactions on Power Delivery, (19) 1, 221-229, (2004).
- [19] García B., Burgos J. C., Alonso A., Transformer tank vibration modeling as a method of detecting winding deformations—Part 2: Experimental verification, IEEE Transactions Power Delivery, 21 (1), 164-169, 2006.
- [20] Wang Y. (2015). Transformer vibration and its application to condition monitoring, PhD Thesis, University of Western Australia, School of Mechanical and Chemical Engineering.
- [21] Najafi A., Iskender I., Electromagnetic force investigation on distribution transformer under unbalanced faults based on time stepping finite element methods, Electrical Power and Energy Systems 76, 147–155, 2016.
- [22] Shuai P., Biela J., Investigation of Acoustic Noise Sources in Medium Frequency, Medium Voltage Transformers, European Conference on Power Electronics and Applications (EPE'14-ECCE Europe), 2014, pp. 1-11.
- [23] Garcia B., Burgos J. C., Alonso A., Winding deformations detection in power transformers by tank vibrations monitoring, Electric Power Systems Research 74, 129-138, 2005.
- [24] Wei G. S., Xin L., Qiang L., Hong W., Duanchunjian Z., Vibration finite element analysis of SC10 dry-type transformer core, Sensors and Transducers, 173 (6), 75-81, (2014).
- [25] Tabrizi S., Study of effective methods of characterisation of magnetostriction and its fundamental effect on transformer core noise, PhD thesis, Cardiff University Wales, 2013.
- [26] Du B. X., Liu D. S., Dynamic behavior of magnetostriction-ınduced vibration and noise of amorphous alloy cores, IEEE Transactions on Magnetics, 51 (4), (2015).
- [27] Hong K., Huang H., Zhou J., Winding condition assessment of power transformers based on vibration correlation, IEEE Transactions on Power Delivery, 30 (4), 1735-1742, (2015).
- [28] Bargallo R. (2006). Finite Elements for Electrical Engineering. The Polytechnic University of Catalonia (UPC).
- [29] Gutten M., Janura R., Jurcik J., Determination of Electromagnetic Forces Caused by Short-Circuit Currents, 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 2015, 1-4.
- [30] Mohamed, N., Electromagnetic forces in transformers under short circuit conditions, Powertech Transformers, 36-40, 2011.
- [31] Prabhakar M. V., Ganguli T. K. (2003). Transformers, McGraw Hill Education, India.
- [32] Güneri S., Kömürgöz G., Gündoğdu T., Transformatörde Kısa Devre Kuvvetleri, Eleco Bursa Elektrik – Elektronik – Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, 2014, 199-203.