Araştırma Makalesi
BibTex RIS Kaynak Göster

C20 FULLERENE CCl3 ADSORPSİYONUNUN TEORİK OLARAK İNCELENMESİ

Yıl 2020, , 141 - 149, 23.03.2020
https://doi.org/10.29109/gujsc.652303

Öz

Bu çalışmada, Yoğunluk Fonksiyonel Teori (DFT) kullanılarak, C20 fullerene CCl3 (karbon triklorür) katkılanması ile elde edilen C20CCl3 molekülünün yapısal ve elektronik özellikleri incelendi. Yapılan hesaplamalarda adsorpsiyon enerjileri LDA ve GGA için sırası ile -4.17 eV ve -3.41 eV olarak elde edilmiştir. Optimize edilmiş C20CCl3 yapıda C – Cl atomları arasındaki bağ uzunluklarının CCl3 moleküler yapıdaki bağ uzunluklarına göre arttığı gözlemlenmiştir. CCl3 molekülünün fullerende bağlandığı karbon atomunun, fulleren yapı içinde bağ yaptığı diğer karbon atomları ile arasındaki bağ uzunluklarının da arttığı hesaplanmıştır. CCl3 ve fullerenin birleşmesi ile elde edilen moleküler yapıda GapHL değerleri LDA ve GGA için sırası ile 0.57 ve 0.73 eV olarak elde edilmiştir. C20CCl3 molekülü GapHL değerlerine göre hem LDA hemde GGA yaklaşımı için yarıiletken malzeme olarak değerlendirilebilir.

Kaynakça

  • 1. Kroto H.W., Heath J.R., O’Brien S.C., Smalley R.E., ‘C60: Buckminster fullerene’ Nature 318, 162 – 163, (1985).
  • 2. Kratschmer W., Lamb L. D., Fostiropoulos K., Huffman D. R., ‘Solid C60: a new form of carbon’ Nature 347, 354 - 358, (1990).
  • 3. Olga V. Pupysheva O. V., Farajian A. A., Boris I. Y., ‘Fullerene Nanocage Capacity for Hydrogen Storage’ Nano Lett. 8, 767 – 774, (2008).
  • 4. Yoon M., Yang S., Hicke C., Wang E., Geohegan D., Zhang Z., ‘Calcium as the Superior Coating Metal in Functionalization of Carbon Fullerenes for High-Capacity Hydrogen Storage’ Phys. Rev. Lett. 100, 206806, (2008).
  • 5. Bosi S., Da Ros T., Spalluto G., Prato M., ‘Fullerene derivatives: an attractive tool for biological applications’ Eur. J. Med. Chem. 38, 913 – 923,(2003).
  • 6. Andreev I., Petrukhina A., Garmanova A., Babakhin A., Andreev S., Romanova V., Troshin P., Troshina O., DuBuske L., ‘Penetration of fullerene C60 derivatives through biological membranes’ Fuller Nanotub Carbon Nanostruct. 16, 89 – 102, (2008).
  • 7. Tabata Y., Ikada Y., ‘Biological functions of fullerene’ Pure Appl Chem. 71, 2047–53, (1999).
  • 8. Lynch B.J., Zhao Y., Truhlar D.G. , ‘Effectiveness of Diffuse Basis Functions for Calculating Relative Energies by Density Functional Theory’ J. Phys. Chem. A. 107, 1384 – 1388, (2003).
  • 9. Boese A.D., Martin J.M.L., Handy N.C., ‘The role of the basis set: Assessing density functional theory’ J.Chem. Phys. 119, 3005, (2003).
  • 10. Grimme S., Steinmetz M., Korth M., ‘How to Compute Isomerization Energies of Organic Molecules with Quantum Chemical Methods’ J. Org. Chem. 72, 2118 – 2126, (2007).
  • 11. Tachikawa H., Iyama T., Abe S., ‘DFT study on the interaction of Fullerene (C60) with hydroxyl radical (OH)’ Phys. Proc. 14, 139 – 142, (2011).
  • 12. Ren X. Y., Jiang C. Y., Wang J., Liu Z. Y., ‘Endohedral complex of fullerene C60 with tetrahedrane, C4H4@C60’ J. Mol. Graph. Model 27, 558–562, (2008).
  • 13. Pan X. M., Fu Z., Hong B., Zhao L., Qui Y. Q., Su Z. M., Wang R. S., ‘Theoretical studies of the relative stabilities and electronic properties on B endohedral and exohedral fullerenes’ Synthetic Met. 152, 325 – 328, (2005).
  • 14. Marcos P. A., Alonso J. A., López M. J., ‘Simulating the thermal behavior and fragmentation mechanisms of exohedral and substitutional silicon-doped C60’ J. Chem. Phys. 123, 204323, (2005).
  • 15. Guha S., Nakamoto K., ‘Electronic structures and spectral properties of endohedral fullerenes’ Coordin. Chem. Rev. 249, 1111 – 1132 (2005).
  • 16. Popov A. A., Yang S., Dunsch L., ‘Endohedral Fullerenes' Chem. Rev. 113, 5989 – 6113, (2013).
  • 17. Zhang C., Sun W., Cao Z., ‘Most stable structure of fullerene [20] and its novel activity toward addition of alkene: A theoretical study’ J. Chem. Phys. 126, 144306, (2007).
  • 18. Zeng C., Wang H., Wang B., Yang J., Hou J. G., ‘Negative differential resistance device involving two C60 molecules’ Appl.Phys.Lett. 77, 3595 – 3597, (2000).
  • 19. Brabec C. J., Anderson E. B., Davidson B. N., Kajihara S. A., Zhang Q., Bernholc J., Tomanek D., ‘Precursors to C60 fullerene formation’ Phys. Rev. B. 46, 7326–7328, (1992).
  • 20. Wang Z., Day P., Pachter R., ‘Ab initio study of C20 isomers: Geometry and vibrational frequencies’ Chem. Phys. Lett. 248, 121–126, (1996).
  • 21. Taylor P. R., Bylaska E., Weare J. H., Kawai R., ‘C20: Fullerene, bowl or ring? New results from coupled - cluster calculations’ Chem. Phys. Lett. 235, 558–563, (1995).
  • 22. Raghavachari K., Strout D. L., Odom G. K., Scuseria G. E., Pople J. A., Johnson B. G., Gill P. M. W., ‘Isomers of C20: Dramatic effect of gradient corrections in density functional theory’ Chem. Phys. Lett. 214, 357–361, (1993).
  • 23. Feyereisen M., Gutowski M., Simons J., ‘Relative stabilities of fullerene, cumulene, and polyacetylene structures for Cn:n = 18- 60’ The J. of Chem. Phy. 96, 2926–2932, (1992).
  • 24. Grossman J. C., Mitas L., Raghavachari K., ‘Structure and stability of molecular carbon: Importance of electron correlation’ Phys. Rev. Lett. 75, 3870–3873, (1995).
  • 25. Sokolova S., Lüchow A., Anderson J. B., ‘Energetics of carbon clusters C20 from all-electron quantum Monte Carlo calculations’ Chem. Phys. Lett. 323, 229–233, (2000).
  • 26. Prinzbach H., Weiler A., Landenberger P., Wahl F., Worth J., Scott L.T., Gelmont M., Olevano D., v. Issendorff B., ‘Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20’ Nature 407, 60 – 63, (2000).
  • 27. Castro A., Marques M. A. L., Alonso J. A., Bertsch G. F., Yabana K., Rubio A., ‘Can optical spectroscopy directly elucidate the ground state of C20?’ J. Chem. Phys. 116, 1930 – 1933, (2002).
  • 28. Gianturco F. A., Kashenock G. Y., Lucchese R. R., Sanna N., ‘Low-energy resonant structures in electron scattering from C20 fullerene’ J. Chem. Phys. 116, 2811, (2002).
  • 29. Saito M., Miyamoto Y., ‘Vibration and vibronic coupling of C20 isomers: Ring, bowl, and cage clusters’ Phys. Rev. B. 65, 165434, (2002).
  • 30. Romero A. H., Sebastiani D., Ramirez R., Kiwi M., ‘Is NMR the tool to characterize the structure of C20 isomers?’ Chem. Phys. Lett. 366, 134 – 140, (2002).
  • 31. Tsuda M., Ishida T., Nogami T., Kurono S., Ohashi M., ‘C61Cl2. Synthesis and characterization of dichlorocarbene adducts of C60’ Tetrahedron Lett. 34, 6911 – 6912, (1993).
  • 32. Nogami T., Tsuda M., Ishida T., Kurono S., Ohashi M., ‘Addition Reactions of Benzyne, Dienes, Dichlorocarbene, and Oxygen to C60’ Fullerene Sci. Techn. 1, 275 – 285, (1993).
  • 33. Ishida T., Furudate T., Nogami T., Kubota M., Hirano T., Ohashi M., ‘Synthesis and Mass Spectral Analysis of C60 - Dihalocarbene Adducts’ Fullerene Sci. Techn. 3, 399, (1995).
  • 34. Apenova M. G., Akhmetov V.A., Belov N.M., Goryunkov A.A., Ioffe I.N., Lukonina N. S., Markov V. Y., Sidorov L. N., ‘Aklali – Metal Trichloroacetates for Dichloromethylenation of Fullerenes: Nucleophilic Addition - Substitution Route’ Chem. Asian. J. 9, 915 – 923, (2014).
  • 35. Rogachev A. Y., Filatov A. S., Petrukhina M. A., ‘Functionalized Fullerene Cations {R-C60}+ From Theoretical Point of View’ Phys. Chem. Chem. Phys. 14, 10935, (2012).
  • 36. Rogachev A. Y., Filatov A. S., Zabula A. V., Petrukhina M. A., ‘Functionalized corannulene cations: a detailed theoretical survey’ Phys. Chem. Chem. Phys. 14, 3554 – 3567, (2012).
  • 37. Zabula A. V., Spisak S. N., Filatov A. S., Rogachev A. Y. Petrukhina M. A., ‘A Strain-Releasing Trap for Highly Reactive Electrophiles: Structural Characterization of Bowl-Shaped Arenium Carbocations’ Angew. Chem. Int. Ed. 50, 2971–2974, (2011).
  • 38. Soler J. M., Artacho E., Gale J. D., García A., Junquera J., Ordejón P., Sánchez-Portal D., ‘The SIESTA method for ab initio order-N materials simulation’ J. Phys. Condens. Matter 14, 2745 – 2749, (2002).
  • 39. Hohenberg P., Kohn W., ‘Inhomogeneous electron gas’ Phys. Rev. 136, B864 – 871, (1964).
  • 40. Kohn W., Sham L. J., ‘Self-consistent equations including exchange and correlation effects’ Phys. Rev. 140, A1133 – 1138, (1965).
  • 41. Perdew J. P., Zunger A., ‘Self-interaction correction to density-functional approximations for many-electron systems’ Phys. Rev. B 23, 5048 – 5079, (1981).
  • 42. Perdew J. P., Burke K., Ernzerhof M., ‘Generalized gradient approximation made simple’ Phys. Rev. Lett. 77, 3865 – 3868, (1996).
  • 43. Kleinman L., Bylander D. M., ‘Efficacious form for model pseudopotentials’ Phys. Rev. Lett. 48, 1425 – 1428, (1982).
  • 44. Troullier N., Martins J. L., ‘Efficient pseudopotentials for plane-wave calculations’ Phys. Rev. B 43, 1993 – 2006, (1991 ).
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik, Kimya Mühendisliği
Bölüm Tasarım ve Teknoloji
Yazarlar

Ferhat Demiray 0000-0002-4071-9285

Yayımlanma Tarihi 23 Mart 2020
Gönderilme Tarihi 28 Kasım 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Demiray, F. (2020). C20 FULLERENE CCl3 ADSORPSİYONUNUN TEORİK OLARAK İNCELENMESİ. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(1), 141-149. https://doi.org/10.29109/gujsc.652303

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526