Manyetize Edilmiş Su Kullanılarak Manyetik Ortamda Beton Üretimi
Yıl 2020,
, 394 - 404, 28.06.2020
Murat Gökçe
,
Kenan Toklu
Öz
Dünyada ve özellikle gelişmiş ülkelerde beton, ekonomik olması, üretiminin kolaylığı, istenilen şeklin verilebilmesi ve özellikle dayanım ve durabilite gibi mühendislik üstünlükleri nedeniyle en çok tercih edilen yapı malzemesidir. Sürekli artan beton üretimi neticesinde bu alanda yapılan bilimsel araştırmalarda hızlı bir ivme kazanmıştır. Bu çalışmada, manyetize edilmiş su ile üretilen beton ile normal karışım suyu ile üretilen geleneksel beton kıvam ve basınç dayanımı açısından karşılaştırılmıştır. Ayrıca bu çalışmada, karışım suyunun manyetize edilmesi ve manyetik ortamda bulamaç şeklindeki karıştırma tekniği ile ülkemizde çimento esaslı beton üretecek bütün üreticilere yeni bir bakış açısı kazandırılarak daha ekonomik ve kaliteli beton üretim olanağı sunulmuştur.
Kaynakça
- [1] Gholizadeh M., Arabshahi H. The effect of magnetic water on strength parameters of concrete. Journal of Engineering and Technology Research, 3(3), 77-81, (2011).
- [2] Furu T, Schercliff HR, Ashby MF. The interaction between the microstructural variables subgrain size and metals. Materials Science Forum, 43: 217-222, (2006).
- [3] Su N, Wu, YH., Mar CY. Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag. Cement and Concrete Research, 30(4), 599-605 (2000).
- [4] Karam H. and Al-Shamali O. Effect of Using Magnetized Water on Concrete Properties. Third International Conference on Sustainable Construction Materials and Technologies, (2013). available at: http://www.claisse.info/Proceedings.htm
- [5] Afshin H, Gholizadeh M., Khorshidi N. Improving mechanical properties of high strength concrete by magnetic water technology. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 17, 74–79, 2010.
- [6] Su N. and Wu CF. Effect of magnetic field treated water on mortar and concrete containing fly ash. Cement and concrete composites, 25(7), 681-688, (2003).
- [7] Stafford L. “The Mechanism of the Vortex Water Energy System”, Helping Agriculture & the Environment through the 21st Century, Fluid Energy Australia, (1996).
- [8] M Ahmed S. Effect of magnetic water on engineering properties of concrete. AL-Rafdain Engineering Journal, 17(1), 71-82, (2009).
- [9] Gabrielli C, Jaouhari R., Maurin G., and Keddam M. Magnetic water treatment for scale prevention. Water Research, 35(13), 3249-3259 (2001).
- [10] Kronenberg K. Experimental evidence for effects of magnetic fields on moving water. IEEE Transactions on magnetics, 21(5), 2059-2061, (1985).
- [11] Al-Qahtani H. Effect of magnetic treatment on Gulf seawater. Desalination, 107(1), 75-81, (1996).
- [12] Jain A, Laad A., Singh K., Murari K., and Student UG. Effect of magnetic water on properties of concrete. International Journal of Engineering Science, 11864, (2017).
- [13] Reddy BSK, Ghorpade VG., Rao HS. Effect of magnetic field exposure time on workability and compressive strength of magnetic water concrete. International Journal of Advanced Engineering and Technology, 120, 122, (2013).
- [14] Bharath S, Subraja S., ArunKumar P. Influence of magnetized water on concrete by replacing cement partially with copper slag. Journal of Chemical and Pharmaceutical Sciences, 9(4), 2791-2795, (2016).
- [15] TS EN 934-2+A1. Kimyasal katkılar - Beton, harç ve şerbet için - Bölüm 2: Beton kimyasal katkıları - Tarifler, gerekler, uygunluk, işaretleme ve etiketleme. Türk Standardları Enstitüsü, Ankara, (2013).
- [16] Manjupriya T, & Malathy R. Experimental investigation on strength and shrinkage properties of concrete mixed with magnetically treated water. Magnesium, 290, 195, (2016).
- [17] TS EN 12350-2. Beton - Taze beton deneyleri - Bölüm 2: Çökme (slump) deneyi. Türk Standardları Enstitüsü, Ankara, (2019).
- [18] TS EN 12390-3. Beton - Sertleşmiş beton deneyleri - Bölüm 3: Deney numunelerinin basınç dayanımının tayin. Türk Standardları Enstitüsü, Ankara, (2019).