Ağir Hizmet Araci Fren Diski Soğuma Davranişinin İncelenmesi
Yıl 2020,
, 936 - 947, 29.12.2020
İbrahim Can Güleryüz
,
Barış Yılmaz
Öz
Bu çalışmada, ağır hizmet araçlarında kullanılan havalandırmalı fren disklerinin farklı havalandırma kanatçığı geometrileri için soğuma davranışı incelenmiştir. İlk aşamada, deneysel taşınım katsayısı değerleri farklı dönüş hızları için bilinen, standart (konikleşme engelleyici olmayan) ağır hizmet aracı fren diskinin hesaplamalı akışkanlar dinamiği (HAD) analizleri gerçekleştirilmiştir. Sayısal olarak hesaplanan ortalama taşınım katsayısı değerleri ile deneysel sonuçlar karşılaştırılarak HAD analizi değişkenleri doğrulanmıştır. Sayısal ve deneysel ortalama taşınım katsayıları arasındaki korelasyon % 99.9 olarak hesaplanmıştır. İkinci aşamada, konikleşme engelleyici düz havalandırma kanatçıklı ağır hizmet aracı fren diskinin (referans) soğuma başarımı sayısal olarak incelenmiştir. Referans fren diskinin soğuma süresi değerleri, farklı araç hızları için atalet dinamometresi deneyleri ile elde edilmiştir. Referans havalandırmalı fren diskinin ortalama taşınım katsayısı, HAD analizleri ile hesaplanmıştır. Zamana bağlı disk sıcaklıklarını ve soğuma sürelerini elde etmek için taşınım ve ışınım etkileri göz önünde bulundurularak referans fren diskinin zamana bağlı termal analizleri gerçekleştirilmiştir. Sayısal ve deneysel soğuma süresi sonuçları karşılaştırılarak, termal analiz değişkenleri doğrulanmıştır. Doğrulama sonucunda, sayısal ve deneysel soğuma süreleri arasında % 97.9’a varan bir korelasyon elde edilmiştir. Yeni bir havalandırma kanatçığı geometrisi önerilerek, konikleşme engelleyici fren diski geometrisine uyarlanmıştır. Yeni kanatçık geometrisine sahip diskin HAD ve termal analizleri gerçekleştirilerek, ortalama taşınım katsayısı ve soğuma süresi sonuçları referans fren diski ve ağır ticari araçlarda kullanılan diğer bir fren diski ile karşılaştırılmıştır. Önerilen fren diski tasarımı ile referans havalandırmalı fren diski tasarımı karşılaştırıldığında, ortalama taşınım katsayısında % 18.5 artış ve soğuma süresinde % 23.5 iyileşme elde edilmiştir. Bu çalışmada, ilk olarak, ağır hizmet aracı fren disklerinin atalet dinamometresi üzerindeki soğuma süresi deneyleri sayısal olarak modellenmiş ve deneysel veriler kullanılarak doğrulanmıştır. Sonrasında, farklı havalandırma kanatçıklarının fren diski soğuma süresine etkisi araştırılmıştır. Bu sayede, literatüre katkı sağlanmıştır.
Destekleyen Kurum
Tübitak 1501 Sanayi Ar-Ge Projeleri Destekleme Programı
Teşekkür
Bu çalışma, Tübitak 1501 Sanayi Ar-Ge Projeleri Destekleme Programı kapsamında “Ağır ticari araçlar için yüksek başarımlı havalandırmalı fren diski ve poyra tasarımı” başlıklı ve 3190738 numaralı projesi kapsamında desteklenmektedir. Yazarlar desteklerinden dolayı Tübitak’a ve Ege Fren San. ve Tic. A.Ş.’ye teşekkürlerini sunar.
Kaynakça
- Mew, T. (2015). Transient Thermal Response Of Solid, Pinned And Highly Porous Ventilated Brake Discs, Doktora Tezi, University of Witwatersrand, Johennesburg.
- Thuresson, A. (2014). Cfd And Design Analysis Of Brake Disc. Yüksek Lisans Tezi, Chalmers University of Technology, Gothenburg.
- Gotowicki, P. F., Nigrelli, V., Mariotti, G. V., Aleksendric, D. and Duboka, C. Numerical And Experimental Analysis Of A Pegs-Wing Ventilated Disk Brake Rotor, With Pads And Cylinders. In 10 th EAEC European Automotive Congress, 1-15, (2005).
- Stephens, A. (2006). Aerodynamic Cooling Of Automotive Disc Brakes.Yüksek Lisans Tezi, RMIT University, Melbourne.
- Chi, Z. (2008). Thermal Performance Analysis And Geometrical Optimization Of Automotive Brake Rotors, Doktora Tezi, University of Ontario Institute of Technology, Oshawa.
- McPhee, A. D. and Johnson, D. A. Experimental Heat Transfer And Flow Analysis Of A Vented Brake Rotor. International Journal of Thermal Sciences, 47(458-467), (2008).
- Pulugundla, G. (2008). Cfd Design Analysis Of Ventilated Disc Brakes. Yüksek Lisans Tezi, Cranfield University, Cranfield.
- Düzgün, M. and Yıldız, Y. Soğutma Kanallı Fren Disklerinin Frenleme Kuvvetlerine Ve Isı Değişimine Etkileri. 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Türkiye, 1-6, (2009).
- Palmer, E., Mishra, R. and Fieldhouse, J. An Optimization Study Of A Multiple-Row Pin-Vented Brake Disc To Promote Brake Cooling Using Computational Fluid Dynamics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(865-875), (2009).
- Sarip, S. B. (2011). Lightweight Friction Brakes For A Road Vehicle With Regenerative Braking. Design Analysis And Experimental İnvestigation Of The Potential For Mass Reduction Of Friction Brakes On A Passenger Car With Regenerative Braking, Doktora Tezi, University of Bradford, Bradford.
- Pevec, M., Potrc, I., Bombek, G. and Vranesevic, D. Prediction Of The Cooling Factors Of A Vehicle Brake Disc And Its Influence On The Results Of A Thermal Numerical Simulation. International Journal of Automotive Technology, 13(725-733), (2012).
- Raj, K. T. R., Ramsai, R., Mathew, J. and Soniya, G. Numerical Investigation Of Fluid Flow And Heat Transfer Characteristics On The Aerodynamics Of Ventilated Disc Brake Rotor Using CFD. Thermal Science, 18(667-675), (2014).
- Belhocine, A. and Bouchetara, M. Structural And Thermal Analysis Of Automotive Disc Brake Rotor. Archive of Mechanical Engineering, 61(89-113), (2014).
- Belhocine, A., Cho, C. D., Nouby, M., Yi, Y. B. and Bakar, A. R. A. Thermal Analysis Of Both Ventilated And Full Disc Brake Rotors With Frictional Heat Generation. Applied and Computational Mechanics, 8(5-24), (2014).
- Shinde, V. V., Sagar, C. D. and Baskar, P. Thermal And Structural Analysis Of Disc Brake For Different Cut Patterns. International Journal of Engineering Trends and Technology, 11(2231-5381), (2014).
- Yan, H. B., Zhang, Q. C. and Lu, T. J. An X-Type Lattice Cored Ventilated Brake Disc With Enhanced Cooling Performance. International Journal of Heat and Mass Transfer, 80(458-468), (2015).
- Kiran, C. H. Numerical Stimulation Of Ventilated Disc Cooling Effect. International Journal of Mechanical Engineering and Robotics Research, 4(257-270), (2015).
- Jiang, L., Jiang, Y. L., Liang, Y. U., Nan, S. U. and Ding, Y. D. Thermal Analysis For Brake Disks Of Sic/6061 Al Alloy Co-Continuous Composite For CRH3 During Emergency Braking Considering Airflow Cooling. Transactions of Nonferrous Metals Society of China, 22(2783-2791), (2012).
- Ghadimi, B., Kowsary, F. and Khorami, M. Thermal Analysis Of Locomotive Wheel-Mounted Brake Disc. Applied Thermal Engineering, 51(948-952), (2013).
- Voller, G. P., Tirovic, M., Morris, R. and Gibbens, P. Analysis Of Automotive Disc Brake Cooling Characteristics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 217(657-666), (2003).
- Galindo-Lopez, C. H. and Tirovic, M. Understanding And Improving The Convective Cooling Of Brake Discs With Radial Vanes. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(1211-1229). (2008).
- Tang, J., Bryant, D. and Qi, H. S. Coupled CFD And FE Thermal Mechanical Simulation Of Disc Brake. Eurobrake Conference Proceedings, (1-10), (2014).
- Stevens, K. and Tirovic, M. Heat Dissipation From A Stationary Brake Disc, Part 1: Analytical Modelling And Experimental Investigations. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(1707-1733), (2018).
- Tirovic, M. and Stevens, K. Heat Dissipation From A Stationary Brake Disc, Part 2: CFD Modelling And Experimental Validations. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(1898-1924), (2018).
- Güleryüz İ. C. and Yılmaz B. Investigation Of Flow And Thermomechanical Performance Of Ventilated Brake Discs Used In Heavy-Duty Vehicles, 2. International Conference on Materials Science, Mechanical and Automotive Engineerings and Technology Proceedings, 529-536, (2019).
- Karadeniz Z. H. and Güleryüz İ. C. Çapraz Akışlı Rüzgar Türbini Başarımının İncelenmesi, 2. İzmir Rüzgar Sempozyumu, 87-96, (2015).
- Müdürlüğü, Emniyet Genel. Karayolları trafik yönetmeliği. Ankara: Resmi Gazete (23053 Mükerrer sayılı) (2012).
- Oberti, L. World Intellectual Property Organization Application No. WO2004/102028A1, (2004).
INVESTIGATION OF HEAVY-DUTY VEHICLE BRAKE DISC COOLING BEHAVIOUR
Yıl 2020,
, 936 - 947, 29.12.2020
İbrahim Can Güleryüz
,
Barış Yılmaz
Öz
In this study, cooling behaviour of ventilated brake disc which is used in heavy-duty vehicles was investigated for different ventilation vane geometries. In the first stage, computational fluid dynamics (CFD) analyses were conducted on a standard (non-anticoning) heavy-duty brake disc whose experimental convective heat transfer coefficients are known different rotational speeds. The CFD analysis parameters are verified by comparing the numerically calculated average convective heat transfer coefficient values with the experimental results. The correlation between numerical and experimental average convective heat transfer coefficients was calculated as 99.9 %. In the second stage, the cooling performance of anticoning heavy-duty disc (reference) with straight ventilation vanes were investigated numerically. The cooldown period values of reference brake disc were measured by inertia dynamometer experiments for different vehicle speeds. Average convective heat transfer coefficient of reference ventilated brake disc was calculated by CFD analyses. To obtain time dependent disc temperatures and cooldown periods, transient thermal analyses of reference brake disc were conducted by consideration of convection and radiation effects. The thermal analysis parameters are verified by comparing the numerical and experimental cooldown period results. As a result of the verification, a correlation between numerical and experimental cooldown periods was obtained up to 97.9 %. A new ventilation vane geometry was proposed and adopted to anticoning brake disc geometry. The CFD and thermal analyses of disc with new ventilation vane geometry were carried out and the average convective heat transfer coefficient and cooldown duration results were compared with the reference brake disc and another brake disc used in heavy commercial vehicles. In comparison of the proposed brake disc design with the reference ventilated brake disc design the average convective heat transfer coefficient was increased by 18.5 % and the cooldown period was improved by 23.5 %. In this study, firstly, the cooldown period experiments of heavy-duty vehicle brake discs on inertia dynamometer were modelled numerically and verified by using experimental data. After that, the effect of different ventilation vanes on the brake disc cooldown period was investigated. In this way, the contribution has been provided to the literature.
Kaynakça
- Mew, T. (2015). Transient Thermal Response Of Solid, Pinned And Highly Porous Ventilated Brake Discs, Doktora Tezi, University of Witwatersrand, Johennesburg.
- Thuresson, A. (2014). Cfd And Design Analysis Of Brake Disc. Yüksek Lisans Tezi, Chalmers University of Technology, Gothenburg.
- Gotowicki, P. F., Nigrelli, V., Mariotti, G. V., Aleksendric, D. and Duboka, C. Numerical And Experimental Analysis Of A Pegs-Wing Ventilated Disk Brake Rotor, With Pads And Cylinders. In 10 th EAEC European Automotive Congress, 1-15, (2005).
- Stephens, A. (2006). Aerodynamic Cooling Of Automotive Disc Brakes.Yüksek Lisans Tezi, RMIT University, Melbourne.
- Chi, Z. (2008). Thermal Performance Analysis And Geometrical Optimization Of Automotive Brake Rotors, Doktora Tezi, University of Ontario Institute of Technology, Oshawa.
- McPhee, A. D. and Johnson, D. A. Experimental Heat Transfer And Flow Analysis Of A Vented Brake Rotor. International Journal of Thermal Sciences, 47(458-467), (2008).
- Pulugundla, G. (2008). Cfd Design Analysis Of Ventilated Disc Brakes. Yüksek Lisans Tezi, Cranfield University, Cranfield.
- Düzgün, M. and Yıldız, Y. Soğutma Kanallı Fren Disklerinin Frenleme Kuvvetlerine Ve Isı Değişimine Etkileri. 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Türkiye, 1-6, (2009).
- Palmer, E., Mishra, R. and Fieldhouse, J. An Optimization Study Of A Multiple-Row Pin-Vented Brake Disc To Promote Brake Cooling Using Computational Fluid Dynamics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(865-875), (2009).
- Sarip, S. B. (2011). Lightweight Friction Brakes For A Road Vehicle With Regenerative Braking. Design Analysis And Experimental İnvestigation Of The Potential For Mass Reduction Of Friction Brakes On A Passenger Car With Regenerative Braking, Doktora Tezi, University of Bradford, Bradford.
- Pevec, M., Potrc, I., Bombek, G. and Vranesevic, D. Prediction Of The Cooling Factors Of A Vehicle Brake Disc And Its Influence On The Results Of A Thermal Numerical Simulation. International Journal of Automotive Technology, 13(725-733), (2012).
- Raj, K. T. R., Ramsai, R., Mathew, J. and Soniya, G. Numerical Investigation Of Fluid Flow And Heat Transfer Characteristics On The Aerodynamics Of Ventilated Disc Brake Rotor Using CFD. Thermal Science, 18(667-675), (2014).
- Belhocine, A. and Bouchetara, M. Structural And Thermal Analysis Of Automotive Disc Brake Rotor. Archive of Mechanical Engineering, 61(89-113), (2014).
- Belhocine, A., Cho, C. D., Nouby, M., Yi, Y. B. and Bakar, A. R. A. Thermal Analysis Of Both Ventilated And Full Disc Brake Rotors With Frictional Heat Generation. Applied and Computational Mechanics, 8(5-24), (2014).
- Shinde, V. V., Sagar, C. D. and Baskar, P. Thermal And Structural Analysis Of Disc Brake For Different Cut Patterns. International Journal of Engineering Trends and Technology, 11(2231-5381), (2014).
- Yan, H. B., Zhang, Q. C. and Lu, T. J. An X-Type Lattice Cored Ventilated Brake Disc With Enhanced Cooling Performance. International Journal of Heat and Mass Transfer, 80(458-468), (2015).
- Kiran, C. H. Numerical Stimulation Of Ventilated Disc Cooling Effect. International Journal of Mechanical Engineering and Robotics Research, 4(257-270), (2015).
- Jiang, L., Jiang, Y. L., Liang, Y. U., Nan, S. U. and Ding, Y. D. Thermal Analysis For Brake Disks Of Sic/6061 Al Alloy Co-Continuous Composite For CRH3 During Emergency Braking Considering Airflow Cooling. Transactions of Nonferrous Metals Society of China, 22(2783-2791), (2012).
- Ghadimi, B., Kowsary, F. and Khorami, M. Thermal Analysis Of Locomotive Wheel-Mounted Brake Disc. Applied Thermal Engineering, 51(948-952), (2013).
- Voller, G. P., Tirovic, M., Morris, R. and Gibbens, P. Analysis Of Automotive Disc Brake Cooling Characteristics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 217(657-666), (2003).
- Galindo-Lopez, C. H. and Tirovic, M. Understanding And Improving The Convective Cooling Of Brake Discs With Radial Vanes. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(1211-1229). (2008).
- Tang, J., Bryant, D. and Qi, H. S. Coupled CFD And FE Thermal Mechanical Simulation Of Disc Brake. Eurobrake Conference Proceedings, (1-10), (2014).
- Stevens, K. and Tirovic, M. Heat Dissipation From A Stationary Brake Disc, Part 1: Analytical Modelling And Experimental Investigations. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(1707-1733), (2018).
- Tirovic, M. and Stevens, K. Heat Dissipation From A Stationary Brake Disc, Part 2: CFD Modelling And Experimental Validations. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(1898-1924), (2018).
- Güleryüz İ. C. and Yılmaz B. Investigation Of Flow And Thermomechanical Performance Of Ventilated Brake Discs Used In Heavy-Duty Vehicles, 2. International Conference on Materials Science, Mechanical and Automotive Engineerings and Technology Proceedings, 529-536, (2019).
- Karadeniz Z. H. and Güleryüz İ. C. Çapraz Akışlı Rüzgar Türbini Başarımının İncelenmesi, 2. İzmir Rüzgar Sempozyumu, 87-96, (2015).
- Müdürlüğü, Emniyet Genel. Karayolları trafik yönetmeliği. Ankara: Resmi Gazete (23053 Mükerrer sayılı) (2012).
- Oberti, L. World Intellectual Property Organization Application No. WO2004/102028A1, (2004).