Araştırma Makalesi
BibTex RIS Kaynak Göster

Hibrit Nanoakışkanların Termofiziksel Özelliklerinin Isıl Davranışları

Yıl 2020, , 810 - 829, 29.12.2020
https://doi.org/10.29109/gujsc.756583

Öz

Nano boyutta metal oksit parçacıklar içeren nanoakışkanlar ve hibrit nanoakışkanların ısıl sistemlerde çalışma akışkanı olarak kullanıldıklarında geleneksel akışkanlara göre ısıl iletkenlik bakımından daha üstün performans sergiledikleri bilinmektedir. Çalışma akışkanlarının ısıl ve fiziksel özellikleri birçok ısı ve akış problemlerinin çözümünde önemli parametreler olarak yer alır. Bu çalışmada CuO, ZnO, MgO parçacıkları ve CuO+ZnO, MgO+CuO, MgO+ZnO hibrit parçacıklarının nano boyutta olacak şekilde saf su içerisine belirli oranlarda katılarak elde edilen nanoakışkanların termofiziksel özellikleri teorik olarak literatürdeki modeller kullanılarak belirlenmiştir. %0.5, %1, %2,%2.5 olacak şekilde farklı konsantrasyona sahip nanoakışkanların ısıl iletkenlik, özgül ısı, vizkozite değerleri hesaplanmış ve modeller karşılaştırılmıştır.

Kaynakça

  • Wang, X., Xu, X. and Choi, S. U. S. (1999). Thermal conductivity of nanoparticle–fluid mixture. Journal of Thermophysics and Heat Transfer,13 (4), 474-480.
  • Han, D., He, W. and Asif, F. Z. (2017). Experimentalstudy of heat transfer enhancement using nanofluid in double tube heat exchanger. Energy Procedia, 142, 2547-2553. Ardekani, A. M.,Kalantar, V. and Heyhat, M. M. (2019). Experimental study on heat transfer enhancement of nanofluid flow through helical tubes. Advanced Powder Technology, 30 (9), 1815-1822.
  • Teng, T. P.,Hsu, H. G., Mo, H. E. and Chen, C. C. (2010). Thermal efficiency of heat pipe with alümina nanofluid. Journal of Alloys and Compounds, 504 (1), 380-384.
  • Anitha, S., Thomas, T., Parthiban, V. And Pichumani, M. (2019). What dominates heat transfer performance of hybrid nanofluid in single pass Shell and tube heat exchanger?, Advanced Powder Technology, 30 (12), 3107-3117.
  • Sundar L.S., Singh M.K., Ferro M.C. andSousaa A.C.M. “Experimental investigation of the thermal transport properties of grapheneoxide/Co3O4 hybrid nanofluids” Inernational Communiccations in Heat and Mass Transfer, 84, 1-10, (2017).
  • Murshed S. M. S. Santos F. J. V.,Nieto de Castro1 C. A., Patil V. S. and Patil K. R., “Morphology and thermophysical properties of non-aqueoustitania nanofluids”, Heat and Mass Transfer, in press. https://doi.org/10.1007/s0023.
  • Turgut A., Tavman I., Chirtoc M., Schuchmann H.P., Sauter C. and Tavman S., “Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids”, International Journal of Thermophysics, 30(4): 1213-1226, (2009).
  • Ghasemi S. and Karimipour A., “Experimental investigation of the effects of temperature and mass fraction on thedynamic viscosity of CuO-paraffin nanofluid”, Applied Thermal Engineering, 128, 189-197, (2018).
  • Tiwari, A. K.,Ghosh, P. and Sarkar, J. “Performance comparison of the plate heat exchanger using different nanofluids”. Experimental Thermal and Fluid Science, 49, 141-151, (2013).
  • Onyiriuka, E., Ighodaro, O., Adelaja, A., Ewim, D. and Bhattacharyya, S. “A numerical investigation of the heat transfer characteristics of water-based mango bark nanofluid flowing in a double-pipe heat exchanger”. Heliyon, 5(9), e02416, (2019).
  • Wang B.X., Zhou L.P. and Peng X.F., “Surface and size effects on the specific heat capacity of nanoparticles”, International Journal of Thermophysics, 27(1): 139-151 (2006).
  • Sundur, L. S., Sharma, K.V., Singh, M. K., Sousa, A.C.M., “Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor- A review”. Renewable and Sustainable Energy Reviews, 68 (1), 185-198, (2017).
  • Nguyen, C., Desgranges, F., Galanis, N., Roy, G., Mare, T. and Boucher, S., “Viscosity data for Al2O3–water nanofluid—hysteresis:is heat transfer enhancement using nanofluids reliable?”. International Journal of Thermal Science, (47), 103–11, (2008).
  • Pastoriza-Gallego, M. J., Casanova, C., Legido, J. L. and Pineiro, M. M., “CuO in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity”. Fluid Phase Equilibria, 300, 188-196, (2011).
  • Suganthi K.S. and Rajan K.S, “Temperature induced changes in ZnO – water nanofluid: zeta potential, size distribution and viscosity profiles”, International Journal of Heat and Mass Transfer, 55(25-26), 796:-7980, (2012).
  • Sahooli, M. and Sabbaghi, S., “Investigation of thermal properties of CuO nanoparticles on the ethylene glycol–water mixture”. Materials Letters, 93, 254-257, . (2013).
  • Nadooshan, A. A., “An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide”. Physica E: Low-dimensional Systems and Nanostructures, 87, 15-19, (2017).
  • Kim, H. D., Kim, J. and Kim, M. H., “Experimental studies on CHF characteristics of nano-fluids at pool boiling”, International Journal of Multiphase Flow, 33(7), 691-706, (2007).
  • Mohammad Hemmat Esfe, Masoud Afrand, Arash Karimipour, Wei-MonYan, Nima, Sina., “An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol”. International Communications in Heat and Mass Transfer, Volume 67, October 2015, Pages 173-175.
  • Mohammad Hemmat Esfe, SeyfolahSaedodin, Mostafa Mahmoodi, “Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow”. Experimental Thermal and Fluid Science, Volume 52, January 2014, Pages 68-78.
  • Kumar, P. M., Kumar, J., Tamilarasan, R., Sendhilnathan, S. and Suresh, S., "Review on nanofluids theoretical thermal conductivity models", Engineering Journal, 19(1), 67–83, 2015.
  • Bellos, E. and Tzivanidis, C., "Parametric investigation of nanofluids utilization in parabolic trough collectors", Thermal Science and Engineering Progress, 2, 71–79, (2017).
  • Gupta, M., Singh, V., Kumar, R. and Said, Z., "A review on thermophysical properties of nanofluids and heat transfer applications", Renewable and Sustainable Energy Reviews, 74(December 2015), 638–670, (2017).
  • Huminic, G. and Huminic, A., "Hybrid nanofluids for heat transfer applications–A state-of the art review", International Journal of Heat and Mass Transfer, 125, 82–103, (2018).
  • Senthilkumar, A. P., "Effectiveness study on Al2O3-TiO2 Nanofluid Heat Exchanger", International Journal of Engineering and Robot Technology, 3(2), 8613, (2012).
  • Sözen, A., Variyenli, H. İ., Özdemir, M. B., Gürü, M. and Aytaç, İ., “Heat transfer enhancement using alumina and fly ash nanofluids in parallel and cross-flow concentric tube heat exchangers”, Journal of the Energy Institute, 89(3), 414-424, (2016).
  • Ateş H., Bahçeci E., “Nano malzemeler için üretim yöntemleri”, Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım Ve Teknoloji GU J Sci Part:C 3(2):483-499 (2015).
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

İpek Aytaç 0000-0003-1213-8325

Yayımlanma Tarihi 29 Aralık 2020
Gönderilme Tarihi 22 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Aytaç, İ. (2020). Hibrit Nanoakışkanların Termofiziksel Özelliklerinin Isıl Davranışları. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(4), 810-829. https://doi.org/10.29109/gujsc.756583

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526