Araştırma Makalesi
BibTex RIS Kaynak Göster

Non-Newtonian Sıvıların Aksiyel Halka Akışında Basınç Kaybının Belirlenmesi için Yeni Bir Çözüm Yaklaşımı

Yıl 2020, , 758 - 767, 29.12.2020
https://doi.org/10.29109/gujsc.777699

Öz

Bu çalışmada reodinamiğin temel problemlerinden biri olan akışkanların eş eksenli (konsentrik) silindirik borularda non-Newtonian (Power-Law) akışında basınç düşüşünü belirlemek için yeni yaklaşık analitik bir yöntem sunulmuştur. Bu yöntemde, Fredrickson & Bird (1958) ve Hanks & Larsen (1979)’in sonuçları dikkate alınarak Power-Law akış profilinin boşluktaki akış hızının maksimum olduğu bölgenin koordinatlarını analitik olarak belirleyen formül önerilmiştir. Önerilen analitik formülün Power-Law reolojik modelin parametrelerinin bütün değişim aralığında (n=0…∞) geçerli olduğu saptanmıştır. Elde edilen sonuçların literatürde sunulan verilerle iyi uyum sağladıkları grafiklerle gösterilmiştir. Önerilen formülün farklı bilim dallarında hidrodinamik, ısı ve kütle transferi problemlerinin yaklaşık çözümlerine önemli katkı sağlayacağı vurgulanmıştır.

Destekleyen Kurum

İnönü Üniversitesi Bilimsel Araştırmalar Projeleri Birimi-BAP

Proje Numarası

FDK-2017-775

Teşekkür

Bu çalışma İnönü Üniversitesi Bilimsel Araştırma Projeleri Birimi (Proje No: FDK-2017-775) tarafından desteklenmiştir. Katkılarından dolayı İnönü Üniversitesi Bilimsel Araştırma Projeleri Birimi’ne teşekkürlerimizi sunarız.

Kaynakça

  • Bird, R. B., Stewart, W. E., Lightfoot, E. N. (2002). Transport Phenomena, 2nd Edition, John Wiley & Sons, Inc.
  • Chhabra, R. P., Richardson, J. F. (2008). Non-Newtonian Flow and Applied Rheology: Engineering Applications, Butterworth-Heinemann.
  • Chhabra, R. P., & Richardson, J. F. (1999). Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering Applications, Butterworth-Heinemann.
  • Schulman, Z. P. (1975). Convective heat and mass transfer in rheologically complex fluids, Moscow, Energiya, 352.
  • Ilicali, C. & Engez, S. T. (1996). Laminar Flow of Power Law Fluid Foods in Concentric Annuli, Journal of Food Engineering, 30, 255-262.
  • Bird, R. B., Armstrong, R. C., Hassager, O. (1987). Dynamics of Polymer Liquids. Vol.1: Fluid Mechanics, John Wiley & Sons, Inc.
  • Jiang, X. (2020). Nanotechnology and Microfluidics, Wiley-VCH, 419.
  • Danon, D., Knyszynski, A., Hayflick, L., Dieter Platt (eds.) (1988). Blood Cells, Rheology, and Aging, Springer Berlin Heidelberg.
  • Yılmaz, F., & Gundogdu, M. Y. (2008). A Critical Review On Blood Flow in Large Arteries; Relevance to Blood Rheology, Viscosity Models, and Physiologic Conditions, Korea-Australia Rheology Journal, 20(4), Pp. 197-211.
  • Rodkiewicz, C. M. (Ed.) (1983). Arteries and Blood Flow, Springer-Verlag Wien 417.
  • Fredrickson, A. G., & Bird, R. B. (1958). Non-Newtonian Flow in Annuli, Ind. Eng. Chem., 50 (3), 347-352.
  • Hanks, R. W., & Larsen, K. M. (1979). The Flow Of Power-Law Non-Newtonian Fluids in Concentric Annuli. Ind. Eng. Chem. Fundam., 18(1), 33-35.
  • Rotem, Z. (1962). Non-Newtonian Flow in Annuli, J. Appl. Mech.,Trans. ASME, Ser. E, 29, 421.
  • Kozicki, W., Chou, C. H., Tiu, C. (1966) Non-Newtonian Flow in Ducts of Arbitrary Cross-Sectional Shape, Chem. Eng. Sci. 21, 665-679.
  • Vaughn, R. D., Bergman P. D. (1966). Laminar Flow of Non-Newtonian Fuids in Concentric Annuli, I&EC Process Design and Development, 5(1), 44-47.
  • Wein, O., Nebrensky, J., Wichterle, K. (1970). Non-Newtonian Flow in Annuli, Rheologica Acta, 9(2), 278-282.
  • McEachern, D. W. (1966). Axial Laminar Flow of a Non-Newtonian Fluid in an Annulus, AIChE J. 12(2), 328-332.
  • Christopher P. R., & Christiansen, E. B. (1974). Axial, Laminar, Non-Newtonian Flow in Annuli, I&EC Process Design and Development, 13(4), 391-396.
  • Malik, R., Shenoy, U. V. (1991). Generalized Annular Couette Flow of a Power-Law Fluid, Ind. Eng. Chem. Research, 30(8), 1950-1954.
  • David, J., Filip, P. (1994). Quasisimilarity of Flow Behavior of Power-Law Fluids in Concentric Annuli, Fluid Dyn. Res. 14(2), 63-70.
  • David, J., Filip, P., (1996). Explicit Pressure Drop/Flow Rate Relation for Laminar Axial Flow of Power-Law Fluids in Concentric Annuli, J. Pet. Sci. & Eng. 16(4), 203-208.
  • Tiu, C., Bhattacharyya, S. (1974). Developing and Fully Developed Velocity Profiles for Inelastic Power Law Fluids in an Annulus, AIChE J., 20(6), 1140-1144.
  • Mishra, P., Mishra, I. (1976). Flow Behavior of Power Law Fluids in an Annulus, AIChE J., 22(3) 617-619.
  • Gupta, R. K., Chhabra, R. P. (1996). Laminar Flow of Power Law Fluids in Concentric Annuli, AIChE J. 42(7), 2080-2083.
  • Prasanth, N., Shenoy, U. V. (1992). Poiseuille Flow of a Power-Law Fluid Between Coaxial Cylinders, J. Appl. Polym. Sci., 46(7), 1189-1194.
  • Worth, R. A. (1979). Accuracy of the parallel-plate analogy for representation of viscous flow between coaxial cylinders, J. Appl. Polym. Sci., 24(2), 319-328.
  • Flip, P. (2007). Couette-Poiseuille Flow of Non-Newtonian Fluids in Concentric Annuli, Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, August 25-27, 9-14.
  • Haobo, Z., Honghai, F., Yinghu Z., Qi, P. (2014). A New Utility Calculation Model for Axial Flow of Non‐Newtonian Fluid in Concentric Annuli, The Canadian Journal of Chemical Engineering, 92(5), 945-952.
  • David, J., Filip, P. (1995). Relationship of annular and parallel-plate Poiseuille flows for power-law fluids. Polym.-Plast. Technol. Eng. J. 34, 947– 960.
  • Bilgili, H., Abbasov, T. (2019). Magnetic Separation Of Bioparticles In Rheological Suspension, III. Uluslararası AVRASYA Multidisipliner Çalışmalar Kongresi, Uygulamalı Bilimler Kitabı 4-7 Nisan / Gaziantep-Türkiye, pp. 709-714.
  • Bilgili, H., Abbasov, T. (2020). Manyetik İlaç Hedefleme Uygulamalarında Kan Reolojik Akış Modellerinin Analizi, MAS 12. Uluslararası Matematik-Mühendislik-Fen ve Sağlık Bilimleri Kongresi, 18-19 Temmuz, İzmir-Türkiye.
  • Leonov, E. G., Isaev, V. I. (2009). Applied Hydro-Aeromechanics in Oil and Gas Drilling John Wiley & Sons, Inc.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Tasarım ve Teknoloji
Yazarlar

Teymuraz Abbasov 0000-0002-0290-8333

Hatice Bilgili 0000-0002-3897-8835

Proje Numarası FDK-2017-775
Yayımlanma Tarihi 29 Aralık 2020
Gönderilme Tarihi 7 Ağustos 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Abbasov, T., & Bilgili, H. (2020). Non-Newtonian Sıvıların Aksiyel Halka Akışında Basınç Kaybının Belirlenmesi için Yeni Bir Çözüm Yaklaşımı. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(4), 758-767. https://doi.org/10.29109/gujsc.777699

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526