Araştırma Makalesi
BibTex RIS Kaynak Göster

PbS Kuantum Nokta İnce Filmlerin Üretilmesi ve Karakterizasyonu

Yıl 2020, , 1021 - 1033, 29.12.2020
https://doi.org/10.29109/gujsc.825327

Öz

Bu çalışmada, kurşun sülfür kuantum nokta (PbS QD) ince filmler dönel kaplama yöntemi kullanılarak soda-kireç silikat cam alttaşlar üzerine üretildi. Kuantum nokta ince film numunelerinin optik özelliklerini araştırmak için soğurma spektroskopisi ve fotolüminesans (PL) emisyon spektroskopisi yöntemleri kullanıldı. Spektroskopik yöntem sonuçları, üretilen ince filmlerin beklenildiği gibi optik olarak yakın kızılötesi bölgesinde (near-IR) aktif olduğu gösterdi. Üretilen kuantum nokta ince filmlerin yapısal özelliklerinin tayini için eş odaklı Raman spektroskopisi, atomik kuvvet mikroskobu (AFM) ve taramalı elektron mikroskobu (SEM) ölçümleri yapıldı. Raman spektroskopisi sonuçlarında, PbS yapısının enine optik modu (TO) ve boyuna optik modu (LO) gözlendi. Üretilen filmlerin AFM analizlerinden yüzey pürüzlülüğü 2.11 nm ve yüzeydeki partikül boyutlarının ortalama 0.5 nm ile 1.0 nm aralığında değiştiği hesaplandı. SEM görüntülerinden, üretim sonrasında metanol ile yıkama ve ısıl işlem yapılmamış numunelerin yüzeyinde organik bir katman ve yapıları içerisinde çok küçük deliklerin (pinhole) varlığı tespit edildi. Yıkama ve düşük başınç altında ısıl işlem yapılan numunelerin SEM görüntülerinde ise metanol yıkama ile organik tabakanın yapıdan uzaklaştığı ve düşük basınç altında ısıl işlem sonrasında çok küçük deliklerin kuantum noktalar tarafından kapatıldığı görüldü.

Kaynakça

  • [1] A.P. Alivisatos, Perspectives on the Physical Chemistry of Semiconductor Nanocrystals, J. Phys. Chem. 100 (1996) 13226–13239. https://doi.org/10.1021/jp9535506.
  • [2] S.I. Pokutnyi, Exciton states in quasi-zero-dimensional semiconductor nanosystems, Semiconductors. 46 (2012) 165–170. https://doi.org/10.1134/S1063782612020194.
  • [3] T. Chakraborty, Quantum Dots: A survey of the properties of artificial atoms, Elsevier, Amsterdam, 1999.
  • [4] O.A.A. Ekimov A. I., Quantum size effect in three-dimensional microscopic semiconductor crystals, JETP Lett. 34 (1981) 345–348.
  • [5] L. Chen, Y. Jiang, C. Wang, X. Liu, Y. Chen, J. Jie, Green chemical approaches to ZnSe quantum dots: preparation, characterisation and formation mechanism, J. Exp. Nanosci. 5 (2010) 106–117. https://doi.org/10.1080/17458080903314022.
  • [6] U. Serincan, H.K. Mutlu, K. Mustafa, Kuantum Nokta Ara Bant Oluşumlu Güneş Hücresinin Büyütülmesi, Fabrikasyonu ve Karakterizasyonu, J. Polytech. 20 (2017) 565–569. http://dergipark.gov.tr/politeknik/issue/33116/339365.
  • [7] C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc. 115 (1993) 8706–8715. https://doi.org/10.1021/ja00072a025.
  • [8] O.E. Semonin, J.M. Luther, S. Choi, H.-Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell, Science (80-. ). 334 (2011) 1530–1533. https://doi.org/10.1126/science.1209845.
  • [9] L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory, J. Phys. Chem. 90 (1986) 2555–2560. https://doi.org/10.1021/j100403a003.
  • [10] G. Bester, A. Zunger, Electric field control and optical signature of entanglement in quantum dot molecules, Phys. Rev. B. 72 (2005) 165334. https://doi.org/10.1103/PhysRevB.72.165334.
  • [11] E. Muñoz, Z. Barticevic, M. Pacheco, Electronic spectrum of a two-dimensional quantum dot array in the presence of electric and magnetic fields in the Hall configuration, Phys. Rev. B. 71 (2005) 165301. https://doi.org/10.1103/PhysRevB.71.165301.
  • [12] S.M.B. Albahrani, T. Seoudi, D. Philippon, L. Lafarge, P. Reiss, H. Hajjaji, G. Guillot, M. Querry, J.-M. Bluet, P. Vergne, Quantum dots to probe temperature and pressure in highly confined liquids, RSC Adv. 8 (2018) 22897–22908. https://doi.org/10.1039/C8RA03652G.
  • [13] A.J. Nozik, Quantum dot solar cells, Phys. E Low-Dimensional Syst. Nanostructures. 14 (2002) 115–120. https://doi.org/10.1016/S1386-9477(02)00374-0.
  • [14] R.D. Schaller, V.I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion, Phys. Rev. Lett. 92 (2004) 186601–1. https://doi.org/10.1103/PhysRevLett.92.186601.
  • [15] a. J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, J.C. Johnson, Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells, Chem. Rev. 110 (2010) 6873–6890. https://doi.org/10.1021/cr900289f.
  • [16] S. Fafard, K. Hinzer, S. Raymond, M. Dion, J. McCaffrey, Y. Feng, S. Charbonneau, Red-Emitting Semiconductor Quantum Dot Lasers, Science (80-. ). 274 (1996) 1350–1353. https://doi.org/10.1126/science.274.5291.1350.
  • [17] M. Grundmann, U. Richter, V.M. Ustinov, P.S. Kop’ev, N. Kirstaedter, D. Bimberg, P. Werner, S.S. Ruvimov, N.N. Ledentsov, U. Gösele, Z.I. Alferov, J. Heydenreich, M.V. Maximov, Low threshold, large To injection laser emission from (InGa) as quantum dots, Electron. Lett. 30 (1994) 1416–1417. https://doi.org/10.1049/el:19940939.
  • [18] S.A. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, E.H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics., Nat. Mater. 4 (2005) 138–142. https://doi.org/10.1038/nmat1299.
  • [19] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E.H. Sargent, Ultrasensitive solution-cast quantum dot photodetectors., Nature. 442 (2006) 180–183. https://doi.org/10.1038/nature04855.
  • [20] C. Hu, D. Dong, X. Yang, K. Qiao, D. Yang, H. Deng, S. Yuan, J. Khan, Y. Lan, H. Song, J. Tang, Synergistic Effect of Hybrid PbS Quantum Dots/2D-WSe 2 Toward High Performance and Broadband Phototransistors, Adv. Funct. Mater. 27 (2017) 1603605. https://doi.org/10.1002/adfm.201603605.
  • [21] K.-S. Cho, E.K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S.J. Lee, S.-J. Kwon, J.Y. Han, B.-K. Kim, B.L. Choi, J.M. Kim, High-performance crosslinked colloidal quantum-dot light-emitting diodes, Nat. Photonics. 3 (2009) 341–345. https://doi.org/10.1038/nphoton.2009.92.
  • [22] L. Qian, Y. Zheng, J. Xue, P.H. Holloway, Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures, Nat. Photonics. 5 (2011) 543–548. https://doi.org/10.1038/nphoton.2011.171.
  • [23] K.-H. Lee, J.-H. Lee, W.-S. Song, H. Ko, C. Lee, J.-H. Lee, H. Yang, Highly Efficient, Color-Pure, Color-Stable Blue Quantum Dot Light-Emitting Devices, ACS Nano. 7 (2013) 7295–7302. https://doi.org/10.1021/nn402870e.
  • [24] İ. Candan, Investigation on the incorporation of quantum dot thin film layers in the organic and inorganic solar cell structures, (PhD. Thesis), Middle East Technical University (METU), 2016. http://etd.lib.metu.edu.tr/upload/12619853/index.pdf.
  • [25] B.J. Moon, S. Cho, K.S. Lee, S. Bae, S. Lee, J.Y. Hwang, B. Angadi, Y. Yi, M. Park, D.I. Son, Quantum Dots: Enhanced Photovoltaic Performance of Inverted Polymer Solar Cells Utilizing Multifunctional Quantum-Dot Monolayers, Adv. Energy Mater. 5 (2015). https://doi.org/10.1002/aenm.201570011.
  • [26] L. Yu, Z. Li, Y. Liu, F. Cheng, S. Sun, Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application, Appl. Surf. Sci. 305 (2014) 359–365. https://doi.org/10.1016/j.apsusc.2014.03.090.
  • [27] S. Horoz, Cr Katkılı ZnS KuantumNoktalarının Karakterizasyonuve FotovoltaikÖzelliklerinin İncelenmesi, Iğdır Univ. J. Inst. Sci. Technol. (2018) 89–97. https://doi.org/10.21597/jist.428315.
  • [28] Ç. Özada, Nükleer Görüntüleme Sistemlerinde Kuantum Noktaların Kullanılması, Mühendis Beyinler Derg. 1 (2016) 6–11. http://dergipark.gov.tr/muhendis-beyinler/issue/17300/281347.
  • [29] C.E. Rowland, K. Susumu, M.H. Stewart, E. Oh, A.J. Mäkinen, T.J. O’Shaughnessy, G. Kushto, M.A. Wolak, J.S. Erickson, A. L. Efros, A.L. Huston, J.B. Delehanty, Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes, Nano Lett. 15 (2015) 6848–6854. https://doi.org/10.1021/acs.nanolett.5b02725.
  • [30] M. V. Yezhelyev, A. Al-Hajj, C. Morris, A.I. Marcus, T. Liu, M. Lewis, C. Cohen, P. Zrazhevskiy, J.W. Simons, A. Rogatko, S. Nie, X. Gao, R.M. O’Regan, In Situ Molecular Profiling of Breast Cancer Biomarkers with Multicolor Quantum Dots, Adv. Mater. 19 (2007) 3146–3151. https://doi.org/10.1002/adma.200701983.
  • [31] T. Jin, Y. Imamura, Applications of Highly Bright PbS Quantum Dots to Non-Invasive Near-Infrared Fluorescence Imaging in the Second Optical Window, ECS J. Solid State Sci. Technol. 5 (2016) R3138–R3145. https://doi.org/10.1149/2.0171601jss.
  • [32] J. Huang, S. Liu, L. Kuang, Y. Zhao, T. Jiang, S. Liu, X. Xu, Enhanced photocatalytic activity of quantum-dot-sensitized one-dimensionally-ordered ZnO nanorod photocatalyst, J. Environ. Sci. 25 (2013) 2487–2491. https://doi.org/10.1016/S1001-0742(12)60330-1.
  • [33] X.-F. Shi, X.-Y. Xia, G.-W. Cui, N. Deng, Y.-Q. Zhao, L.-H. Zhuo, B. Tang, Multiple exciton generation application of PbS quantum dots in ZnO@PbS/graphene oxide for enhanced photocatalytic activity, Appl. Catal. B Environ. 163 (2015) 123–128. https://doi.org/10.1016/j.apcatb.2014.07.054.
  • [34] P.R. Brown, D. Kim, R.R. Lunt, N. Zhao, M.G. Bawendi, J.C. Grossman, V. Bulović, Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange, ACS Nano. 8 (2014) 5863–5872. https://doi.org/10.1021/nn500897c.
  • [35] F.W. Wise, Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement, Acc. Chem. Res. 33 (2000) 773–780. https://doi.org/10.1021/ar970220q.
  • [36] R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros, Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots, Nano Lett. 5 (2005) 865–871. https://doi.org/10.1021/nl0502672.
  • [37] I. Moreels, D. Kruschke, P. Glas, J.W. Tomm, The dielectric function of PbS quantum dots in a glass matrix, Opt. Mater. Express. 2 (2012) 496. https://doi.org/10.1364/ome.2.000496.
  • [38] H.İ. Yavuz, Desing of High-Efficiency Dye-sensitized Nanocrystalline Solar Cells, (PhD. Thesis), Middle East Technical University (METU), 2014. http://etd.lib.metu.edu.tr/upload/12618106/index.pdf.
  • [39] İ. Candan, M. Parlak, Ç. Erçelebi, PbS quantum dot enhanced p-CIGS/n-Si heterojunction diode, J. Mater. Sci. Mater. Electron. 30 (2019) 2127–2135. https://doi.org/10.1007/s10854-018-0484-0.
  • [40] J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Mater. Res. Bull. 3 (1968) 37–46. https://doi.org/10.1016/0025-5408(68)90023-8.
  • [41] C. Liu, J. Heo, X. Zhang, J.-L. Adam, Photoluminescence of PbS quantum dots embedded in glasses, J. Non. Cryst. Solids. 354 (2008) 618–623. https://doi.org/10.1016/j.jnoncrysol.2007.07.069.
  • [42] Z. Remes, T. Novak, J. Stuchlik, T. Stuchlikova, V. Dřínek, R. Fajgar, K. Zhuravlev, Infrared photoluminescence spectra of PBS nanoparticles prepared by the Langmuir-Blodgett and laser ablation methods, Acta Polytech. 54 (2014) 426–429. https://doi.org/10.14311/AP.2014.54.0426.
  • [43] Y. Batonneau, C. Brémard, J. Laureyns, J.C. Merlin, Microscopic and imaging Raman scattering study of PbS and its photo-oxidation products, J. Raman Spectrosc. 31 (2000) 1113–1119. https://doi.org/10.1002/1097-4555(200012)31:12<1113::AID-JRS653>3.0.CO;2-E.
  • [44] G. De Guidici, P. Ricco, P. Lattanzi, A. Anedda, Dissolution of the (001) surface of galena: An in situ assessment of surface speciation by fluid-cell micro-Raman spectroscopy, Am. Mineral. 92 (2007) 518–524. https://doi.org/10.2138/am.2007.2181.

Production and Characterization of PbS Quantum Dot Thin Films

Yıl 2020, , 1021 - 1033, 29.12.2020
https://doi.org/10.29109/gujsc.825327

Öz

In this study, lead sulfide quantum dot (PbS QD) thin films have been produced onto soda lime silicate glass substrates by spin coating method. Absorption spectroscopy and photoluminescence (PL) emission spectroscopy methods were used to investigate the optical properties of quantum dot thin film samples. Spectroscopic methods indicated that the fabricated thin films were optically active in the near-infrared (near-IR) region as expected. The structural properties of quantum dot thin films were carried out by using confocal Raman spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements. The transverse optical mode (TO) and the longitudinal optical mode (LO) of the PbS structure were observed in the Raman spectroscopy results. The AFM analysis of the produced thin films indicated that the surface roughness of the film was 2.11 nm and the particle size on the surface varied in between 0.5 nm and 1.0 nm. In the SEM micro images, the presence of an organic layer and pinholes were detected on the surface and in the structure of samples before washing with methanol and annealing procedures, respectively. The SEM micro images of samples also shown that the organic layer was removed from the film surface by washing with methanol and pinholes was disappered in the film structure after annealing process under the low pressure.

Kaynakça

  • [1] A.P. Alivisatos, Perspectives on the Physical Chemistry of Semiconductor Nanocrystals, J. Phys. Chem. 100 (1996) 13226–13239. https://doi.org/10.1021/jp9535506.
  • [2] S.I. Pokutnyi, Exciton states in quasi-zero-dimensional semiconductor nanosystems, Semiconductors. 46 (2012) 165–170. https://doi.org/10.1134/S1063782612020194.
  • [3] T. Chakraborty, Quantum Dots: A survey of the properties of artificial atoms, Elsevier, Amsterdam, 1999.
  • [4] O.A.A. Ekimov A. I., Quantum size effect in three-dimensional microscopic semiconductor crystals, JETP Lett. 34 (1981) 345–348.
  • [5] L. Chen, Y. Jiang, C. Wang, X. Liu, Y. Chen, J. Jie, Green chemical approaches to ZnSe quantum dots: preparation, characterisation and formation mechanism, J. Exp. Nanosci. 5 (2010) 106–117. https://doi.org/10.1080/17458080903314022.
  • [6] U. Serincan, H.K. Mutlu, K. Mustafa, Kuantum Nokta Ara Bant Oluşumlu Güneş Hücresinin Büyütülmesi, Fabrikasyonu ve Karakterizasyonu, J. Polytech. 20 (2017) 565–569. http://dergipark.gov.tr/politeknik/issue/33116/339365.
  • [7] C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc. 115 (1993) 8706–8715. https://doi.org/10.1021/ja00072a025.
  • [8] O.E. Semonin, J.M. Luther, S. Choi, H.-Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell, Science (80-. ). 334 (2011) 1530–1533. https://doi.org/10.1126/science.1209845.
  • [9] L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory, J. Phys. Chem. 90 (1986) 2555–2560. https://doi.org/10.1021/j100403a003.
  • [10] G. Bester, A. Zunger, Electric field control and optical signature of entanglement in quantum dot molecules, Phys. Rev. B. 72 (2005) 165334. https://doi.org/10.1103/PhysRevB.72.165334.
  • [11] E. Muñoz, Z. Barticevic, M. Pacheco, Electronic spectrum of a two-dimensional quantum dot array in the presence of electric and magnetic fields in the Hall configuration, Phys. Rev. B. 71 (2005) 165301. https://doi.org/10.1103/PhysRevB.71.165301.
  • [12] S.M.B. Albahrani, T. Seoudi, D. Philippon, L. Lafarge, P. Reiss, H. Hajjaji, G. Guillot, M. Querry, J.-M. Bluet, P. Vergne, Quantum dots to probe temperature and pressure in highly confined liquids, RSC Adv. 8 (2018) 22897–22908. https://doi.org/10.1039/C8RA03652G.
  • [13] A.J. Nozik, Quantum dot solar cells, Phys. E Low-Dimensional Syst. Nanostructures. 14 (2002) 115–120. https://doi.org/10.1016/S1386-9477(02)00374-0.
  • [14] R.D. Schaller, V.I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion, Phys. Rev. Lett. 92 (2004) 186601–1. https://doi.org/10.1103/PhysRevLett.92.186601.
  • [15] a. J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, J.C. Johnson, Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells, Chem. Rev. 110 (2010) 6873–6890. https://doi.org/10.1021/cr900289f.
  • [16] S. Fafard, K. Hinzer, S. Raymond, M. Dion, J. McCaffrey, Y. Feng, S. Charbonneau, Red-Emitting Semiconductor Quantum Dot Lasers, Science (80-. ). 274 (1996) 1350–1353. https://doi.org/10.1126/science.274.5291.1350.
  • [17] M. Grundmann, U. Richter, V.M. Ustinov, P.S. Kop’ev, N. Kirstaedter, D. Bimberg, P. Werner, S.S. Ruvimov, N.N. Ledentsov, U. Gösele, Z.I. Alferov, J. Heydenreich, M.V. Maximov, Low threshold, large To injection laser emission from (InGa) as quantum dots, Electron. Lett. 30 (1994) 1416–1417. https://doi.org/10.1049/el:19940939.
  • [18] S.A. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, E.H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics., Nat. Mater. 4 (2005) 138–142. https://doi.org/10.1038/nmat1299.
  • [19] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E.H. Sargent, Ultrasensitive solution-cast quantum dot photodetectors., Nature. 442 (2006) 180–183. https://doi.org/10.1038/nature04855.
  • [20] C. Hu, D. Dong, X. Yang, K. Qiao, D. Yang, H. Deng, S. Yuan, J. Khan, Y. Lan, H. Song, J. Tang, Synergistic Effect of Hybrid PbS Quantum Dots/2D-WSe 2 Toward High Performance and Broadband Phototransistors, Adv. Funct. Mater. 27 (2017) 1603605. https://doi.org/10.1002/adfm.201603605.
  • [21] K.-S. Cho, E.K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S.J. Lee, S.-J. Kwon, J.Y. Han, B.-K. Kim, B.L. Choi, J.M. Kim, High-performance crosslinked colloidal quantum-dot light-emitting diodes, Nat. Photonics. 3 (2009) 341–345. https://doi.org/10.1038/nphoton.2009.92.
  • [22] L. Qian, Y. Zheng, J. Xue, P.H. Holloway, Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures, Nat. Photonics. 5 (2011) 543–548. https://doi.org/10.1038/nphoton.2011.171.
  • [23] K.-H. Lee, J.-H. Lee, W.-S. Song, H. Ko, C. Lee, J.-H. Lee, H. Yang, Highly Efficient, Color-Pure, Color-Stable Blue Quantum Dot Light-Emitting Devices, ACS Nano. 7 (2013) 7295–7302. https://doi.org/10.1021/nn402870e.
  • [24] İ. Candan, Investigation on the incorporation of quantum dot thin film layers in the organic and inorganic solar cell structures, (PhD. Thesis), Middle East Technical University (METU), 2016. http://etd.lib.metu.edu.tr/upload/12619853/index.pdf.
  • [25] B.J. Moon, S. Cho, K.S. Lee, S. Bae, S. Lee, J.Y. Hwang, B. Angadi, Y. Yi, M. Park, D.I. Son, Quantum Dots: Enhanced Photovoltaic Performance of Inverted Polymer Solar Cells Utilizing Multifunctional Quantum-Dot Monolayers, Adv. Energy Mater. 5 (2015). https://doi.org/10.1002/aenm.201570011.
  • [26] L. Yu, Z. Li, Y. Liu, F. Cheng, S. Sun, Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application, Appl. Surf. Sci. 305 (2014) 359–365. https://doi.org/10.1016/j.apsusc.2014.03.090.
  • [27] S. Horoz, Cr Katkılı ZnS KuantumNoktalarının Karakterizasyonuve FotovoltaikÖzelliklerinin İncelenmesi, Iğdır Univ. J. Inst. Sci. Technol. (2018) 89–97. https://doi.org/10.21597/jist.428315.
  • [28] Ç. Özada, Nükleer Görüntüleme Sistemlerinde Kuantum Noktaların Kullanılması, Mühendis Beyinler Derg. 1 (2016) 6–11. http://dergipark.gov.tr/muhendis-beyinler/issue/17300/281347.
  • [29] C.E. Rowland, K. Susumu, M.H. Stewart, E. Oh, A.J. Mäkinen, T.J. O’Shaughnessy, G. Kushto, M.A. Wolak, J.S. Erickson, A. L. Efros, A.L. Huston, J.B. Delehanty, Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes, Nano Lett. 15 (2015) 6848–6854. https://doi.org/10.1021/acs.nanolett.5b02725.
  • [30] M. V. Yezhelyev, A. Al-Hajj, C. Morris, A.I. Marcus, T. Liu, M. Lewis, C. Cohen, P. Zrazhevskiy, J.W. Simons, A. Rogatko, S. Nie, X. Gao, R.M. O’Regan, In Situ Molecular Profiling of Breast Cancer Biomarkers with Multicolor Quantum Dots, Adv. Mater. 19 (2007) 3146–3151. https://doi.org/10.1002/adma.200701983.
  • [31] T. Jin, Y. Imamura, Applications of Highly Bright PbS Quantum Dots to Non-Invasive Near-Infrared Fluorescence Imaging in the Second Optical Window, ECS J. Solid State Sci. Technol. 5 (2016) R3138–R3145. https://doi.org/10.1149/2.0171601jss.
  • [32] J. Huang, S. Liu, L. Kuang, Y. Zhao, T. Jiang, S. Liu, X. Xu, Enhanced photocatalytic activity of quantum-dot-sensitized one-dimensionally-ordered ZnO nanorod photocatalyst, J. Environ. Sci. 25 (2013) 2487–2491. https://doi.org/10.1016/S1001-0742(12)60330-1.
  • [33] X.-F. Shi, X.-Y. Xia, G.-W. Cui, N. Deng, Y.-Q. Zhao, L.-H. Zhuo, B. Tang, Multiple exciton generation application of PbS quantum dots in ZnO@PbS/graphene oxide for enhanced photocatalytic activity, Appl. Catal. B Environ. 163 (2015) 123–128. https://doi.org/10.1016/j.apcatb.2014.07.054.
  • [34] P.R. Brown, D. Kim, R.R. Lunt, N. Zhao, M.G. Bawendi, J.C. Grossman, V. Bulović, Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange, ACS Nano. 8 (2014) 5863–5872. https://doi.org/10.1021/nn500897c.
  • [35] F.W. Wise, Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement, Acc. Chem. Res. 33 (2000) 773–780. https://doi.org/10.1021/ar970220q.
  • [36] R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros, Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots, Nano Lett. 5 (2005) 865–871. https://doi.org/10.1021/nl0502672.
  • [37] I. Moreels, D. Kruschke, P. Glas, J.W. Tomm, The dielectric function of PbS quantum dots in a glass matrix, Opt. Mater. Express. 2 (2012) 496. https://doi.org/10.1364/ome.2.000496.
  • [38] H.İ. Yavuz, Desing of High-Efficiency Dye-sensitized Nanocrystalline Solar Cells, (PhD. Thesis), Middle East Technical University (METU), 2014. http://etd.lib.metu.edu.tr/upload/12618106/index.pdf.
  • [39] İ. Candan, M. Parlak, Ç. Erçelebi, PbS quantum dot enhanced p-CIGS/n-Si heterojunction diode, J. Mater. Sci. Mater. Electron. 30 (2019) 2127–2135. https://doi.org/10.1007/s10854-018-0484-0.
  • [40] J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Mater. Res. Bull. 3 (1968) 37–46. https://doi.org/10.1016/0025-5408(68)90023-8.
  • [41] C. Liu, J. Heo, X. Zhang, J.-L. Adam, Photoluminescence of PbS quantum dots embedded in glasses, J. Non. Cryst. Solids. 354 (2008) 618–623. https://doi.org/10.1016/j.jnoncrysol.2007.07.069.
  • [42] Z. Remes, T. Novak, J. Stuchlik, T. Stuchlikova, V. Dřínek, R. Fajgar, K. Zhuravlev, Infrared photoluminescence spectra of PBS nanoparticles prepared by the Langmuir-Blodgett and laser ablation methods, Acta Polytech. 54 (2014) 426–429. https://doi.org/10.14311/AP.2014.54.0426.
  • [43] Y. Batonneau, C. Brémard, J. Laureyns, J.C. Merlin, Microscopic and imaging Raman scattering study of PbS and its photo-oxidation products, J. Raman Spectrosc. 31 (2000) 1113–1119. https://doi.org/10.1002/1097-4555(200012)31:12<1113::AID-JRS653>3.0.CO;2-E.
  • [44] G. De Guidici, P. Ricco, P. Lattanzi, A. Anedda, Dissolution of the (001) surface of galena: An in situ assessment of surface speciation by fluid-cell micro-Raman spectroscopy, Am. Mineral. 92 (2007) 518–524. https://doi.org/10.2138/am.2007.2181.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Tasarım ve Teknoloji
Yazarlar

İdris Candan 0000-0002-9950-713X

Yayımlanma Tarihi 29 Aralık 2020
Gönderilme Tarihi 13 Kasım 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Candan, İ. (2020). PbS Kuantum Nokta İnce Filmlerin Üretilmesi ve Karakterizasyonu. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(4), 1021-1033. https://doi.org/10.29109/gujsc.825327

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526