Araştırma Makalesi
BibTex RIS Kaynak Göster

Cam Fiber Sandviç Kompozitlerin Düşük Hızlı Darbe Mukavemetinin Nano Parçacık Takviyeli Yapıştırıcı Kullanılarak Artırılması

Yıl 2021, , 492 - 504, 30.09.2021
https://doi.org/10.29109/gujsc.951408

Öz

Sandviç kompozit yapıların havacılık ve uzay endüstrisinde kullanımı artmaktadır. Sandviç kompozit panellerin (SKP) darbe ve diğer mekanik özelliklerinin geliştirilmesi havacılık emniyeti açısından önem arz etmektedir. SKP’lerin imalatında bal peteği yapının alt ve üst yüzeyler ile bağı yapıştırma bağlantıları ile sağlanmaktadır. SKP’de kullanılan yapıştırıcıların mekanik özelliklerinin iyileştirilmesi ile bütün yapının mekanik rijitliği iyileştirilmiş olacaktır. Bu çalışmada cam fiber takviyeli kompozit, üç farklı yapıştırıcı (saf poliüretan, ağırlıkça %0,1 ve %0,2 çok cidarlı karbon nano tüp katkılı poliüretan) ve 8,86 mm hücre çapında alüminyum bal peteği kullanılarak sandviç kompozit paneller üretilmiştir. Üretimi yapılan sandviç kompozitlere 50 J ilk enerji seviyesinde düşük hızlı darbe testleri uygulanmıştır. Darbe deneyleri sonrasında yük-zaman, yük-sehim ve enerji zaman grafikleri elde edilerek çok cidarlı karbon nano tüp (ÇCKNT) katkısının etkisi değerlendirilmiştir. İlaveten, hasar analizi yapılarak ÇCKNT katkısının darbe özelliklerine etkisi belirlenmiştir Poliüretan yapıştırıcıya karbon nano tüp katkısının en büyük temas kuvvetini %3 oranında artırarak SKP’lerin düşük hızlı darbe özelliklerini iyileştirdiği görülmüştür.

Teşekkür

Atık cam fiber prepreg kumaşların hibesi konusundaki desteği için Kordsa A.Ş.’ye teşekkür ederim. Bununla birlikte, bal peteği yapıların temini ve sandviç panellerin üretimindeki destekleri için Altıgen Uzay Havacılık Gemi İnş. Panel Ve San. Tic. Ltd. Şti.’ye şükranlarımı sunarım. Ayrıca laboratuvar imkânlarını kullanmama izin verdiği için Prof. Dr. Mesut Uyaner’e teşekkürlerimi sunmayı borç bilirim.

Kaynakça

  • [1] V. Birman and G. A. Kardomateas, “Review of current trends in research and applications of sandwich structures,” Compos. Part B Eng., vol. 142 , pp. 221–240, 2018.
  • [2] G. B. Chai and S. Zhu, “A review of low-velocity impact on sandwich structures,” in Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 225, pp. 207–230, 2011.
  • [3] C. Caglayan, I. Gurkan, S. Gungor, and H. Cebeci, “The effect of CNT-reinforced polyurethane foam cores to flexural properties of sandwich composites,” Compos. Part A Appl. Sci. Manuf., vol. 115, pp. 187–195, 2018.
  • [4] L. Uğur, H. Duzcukoglu, O. S. Sahin, and H. Akkuş, “Investigation of impact force on aluminium honeycomb structures by finite element analysis,” J. Sandw. Struct. Mater., vol. 22, pp. 87–103, 2020.
  • [5] X. Zhang, F. Xu, Y. Zang, and W. Feng, “Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact,” Compos. Struct., vol. 236, p. 111882, 2020.
  • [6] X. Wu, H. Yu, L. Guo, L. Zhang, X. Sun, and Z. Chai, “Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure,” Compos. Struct., vol. 213, pp. 165–172, 2019.
  • [7] M. Shifa, F. Tariq, and A. D. Chandio, “Mechanical and electrical properties of hybrid honeycomb sandwich structure for spacecraft structural applications,” J. Sandw. Struct. Mater., vol. 23, pp. 222-240, 2019.
  • [8] J. Wang, C. Shi, N. Yang, H. Sun, Y. Liu, and B. Song, “Strength , sti ff ness , and panel peeling strength of carbon fi ber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body,” Compos. Struct., vol. 184, 2017, pp. 1189–1196, 2018.
  • [9] K. Mehar, S. K. Panda, A. Dehengia, and V. R. Kar, “Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment,” J. Sandw. Struct. Mater., vol. 18, pp. 151–173, 2016.
  • [10] S. Belouettar, A. Abbadi, Z. Azari, R. Belouettar, and P. Freres, “Experimental investigation of static and fatigue behaviour of composites honeycomb materials using four point bending tests,” Compos. Struct., vol. 87, no. 3, pp. 265–273, 2009.
  • [11] M. Sadeghi and M. H. Pol, “Investigation of behaviors of glass/epoxy laminate composites reinforced with carbon nanotubes under quasi-static punch shear loading,” J. Sandw. Struct. Mater., vol. 21, pp. 1535–1556, 2019.
  • [12] M. O. Kaman, M. Y. Solmaz, and K. Turan, “Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels,” J. Compos. Mater., vol. 44, no. 24, pp. 2819–2831, 2010. [13] M. Aslan, O. Güler, and Ü. Alver, “The Investigation of the Mechanical Properties of Sandwich Panel Composites with Different Surface and Core Materials,” Pamukkale Univ. J. Eng. Sci., vol. 24, no. 6, pp. 1062–1068, 2018.
  • [14] S. Georgiadis, A. J. Gunnion, R. S. Thomson, and B. K. Cartwright, “Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge,” Compos. Struct., vol. 86, pp. 258–268, 2008.
  • [15] A. S. Sayyad and Y. M. Ghugal, “Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature,” Compos. Struct., vol. 171, pp. 486–504, 2017.
  • [16] E. Burgaz and C. Kendirlioglu, “Thermomechanical behavior and thermal stability of polyurethane rigid nanocomposite foams containing binary nanoparticle mixtures,” Polym. Test., vol. 77, p. 105930, 2019.
  • [17] E. Burgaz, Polyurethane Insulation Foams for Energy and Sustainability. 2019.
  • [18] G. Otorgust, H. Dodiuk, S. Kenig, and R. Tenne, “Important insights into polyurethane nanocomposite-adhesives; a comparative study between INT-WS2 and CNT,” Eur. Polym. J., vol. 89, pp. 281–300, 2017.
  • [19] G. Zhou and M. D. Hill, “Impact damage and energy-absorbing characteristics and residual in-plane compressive strength of honeycomb sandwich panels,” J. Sandw. Struct. Mater., vol. 11, pp. 329–356, 2009.
  • [20] Y. M. Jen and L. Y. Chang, “Effect of thickness of face sheet on the bending fatigue strength of aluminum honeycomb sandwich beams,” Eng. Fail. Anal., vol. 16, pp. 1282–1293, 2009.
  • [21] Y. M. Jen, C. W. Ko, and H. Bin Lin, “Effect of the amount of adhesive on the bending fatigue strength of adhesively bonded aluminum honeycomb sandwich beams,” Int. J. Fatigue, vol. 31, pp. 455–462, 2009.
  • [22] A. Kaboorani and B. Riedl, “Nano-aluminum oxide as a reinforcing material for thermoplastic adhesives,” J. Ind. Eng. Chem., vol. 18, pp. 1076–1081, 2012.
  • [23] H. Akkus, H. Duzcukoglu, and O. S. Sahin, “Experimental research and use of finite elements method on mechanical behaviors of honeycomb structures assembled with epoxy-based adhesives reinforced with nanoparticles,” J. Mech. Sci. Technol., vol. 31, pp. 165–170, 2017.
  • [24] G. Otorgust, H. Dodiuk, S. Kenig, and R. Tenne, “Important insights into polyurethane nanocomposite-adhesives; a comparative study between INT-WS2 and CNT,” Eur. Polym. J., vol. 89, pp. 281–300, 2017. [25] A. Tounici and J. M. Martín-Martínez, “Addition of small amounts of graphene oxide in the polyol during the synthesis of waterborne polyurethane urea adhesives for improving their adhesion properties,” Int. J. Adhes. Adhes., vol. 104, pp. 102275, 2021.
  • [26] M. E. Kabir, M. C. Saha, and S. Jeelani, “Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite,” Mater. Sci. Eng. A, vol. 459, pp. 111–116, 2007.
  • [27] M. C. Saha, M. E. Kabir, and S. Jeelani, “Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles,” Mater. Sci. Eng. A, vol. 479, pp. 213–222, 2008.
  • [28] M. Uyaner and M. Kara, “Dynamic response of laminated composites subjected to low-velocity impact,” J. Compos. Mater., vol. 41, pp. 2877–2896, 2007.
  • [29] A. A. Mohammed, M. V. Hosur, and S. Jeelani, “Processing and characterization of nanophased polyurethane foams,” Cell. Polym., vol. 25, pp. 293–306, 2006.
  • [30] M. A. Bhuiyan, M. V. Hosur, and S. Jeelani, “Low-velocity impact response of sandwich composites with nanophased foam core and biaxial (± 45 °) braided face sheets,” Compos. Part B Eng., vol. 40, pp. 561–571, 2009 .

Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive

Yıl 2021, , 492 - 504, 30.09.2021
https://doi.org/10.29109/gujsc.951408

Öz

The use of sandwich composite structures in the aerospace industry is increasing. Improving the impact and other mechanical properties of sandwich composite panels (SCP) is important for aviation safety. In the manufacture of SCPs, bonding with the lower and upper surfaces of the honeycomb structure is provided by bonding connections. By improving the mechanical properties of the adhesives used in SCP, the mechanical rigidity of the whole structure will be improved. In this study, sandwich composite panels were produced using glass fiber reinforced composite, three different adhesives (pure polyurethane, 0.1% and 0.2% multi-walled carbon nanotube reinforced polyurethane) and an aluminum honeycomb with a cell diameter of 8.86 mm. Low-velocity impact tests were applied to the manufactured sandwich composites at the initial energy level of 50 J. After impact tests, load-time, load-deflection and energy-time graphs were obtained, and the effect of multi-walled carbon nanotube (MWCNT) contribution was evaluated. Also, the effect of the MWCNT addition on impact properties was determined by making a damage analysis. It was observed that the carbon nanotube addition to the polyurethane adhesive increased the maximum contact force by 3%, improving the low-speed impact properties of SCPs.

Kaynakça

  • [1] V. Birman and G. A. Kardomateas, “Review of current trends in research and applications of sandwich structures,” Compos. Part B Eng., vol. 142 , pp. 221–240, 2018.
  • [2] G. B. Chai and S. Zhu, “A review of low-velocity impact on sandwich structures,” in Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 225, pp. 207–230, 2011.
  • [3] C. Caglayan, I. Gurkan, S. Gungor, and H. Cebeci, “The effect of CNT-reinforced polyurethane foam cores to flexural properties of sandwich composites,” Compos. Part A Appl. Sci. Manuf., vol. 115, pp. 187–195, 2018.
  • [4] L. Uğur, H. Duzcukoglu, O. S. Sahin, and H. Akkuş, “Investigation of impact force on aluminium honeycomb structures by finite element analysis,” J. Sandw. Struct. Mater., vol. 22, pp. 87–103, 2020.
  • [5] X. Zhang, F. Xu, Y. Zang, and W. Feng, “Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact,” Compos. Struct., vol. 236, p. 111882, 2020.
  • [6] X. Wu, H. Yu, L. Guo, L. Zhang, X. Sun, and Z. Chai, “Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure,” Compos. Struct., vol. 213, pp. 165–172, 2019.
  • [7] M. Shifa, F. Tariq, and A. D. Chandio, “Mechanical and electrical properties of hybrid honeycomb sandwich structure for spacecraft structural applications,” J. Sandw. Struct. Mater., vol. 23, pp. 222-240, 2019.
  • [8] J. Wang, C. Shi, N. Yang, H. Sun, Y. Liu, and B. Song, “Strength , sti ff ness , and panel peeling strength of carbon fi ber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body,” Compos. Struct., vol. 184, 2017, pp. 1189–1196, 2018.
  • [9] K. Mehar, S. K. Panda, A. Dehengia, and V. R. Kar, “Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment,” J. Sandw. Struct. Mater., vol. 18, pp. 151–173, 2016.
  • [10] S. Belouettar, A. Abbadi, Z. Azari, R. Belouettar, and P. Freres, “Experimental investigation of static and fatigue behaviour of composites honeycomb materials using four point bending tests,” Compos. Struct., vol. 87, no. 3, pp. 265–273, 2009.
  • [11] M. Sadeghi and M. H. Pol, “Investigation of behaviors of glass/epoxy laminate composites reinforced with carbon nanotubes under quasi-static punch shear loading,” J. Sandw. Struct. Mater., vol. 21, pp. 1535–1556, 2019.
  • [12] M. O. Kaman, M. Y. Solmaz, and K. Turan, “Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels,” J. Compos. Mater., vol. 44, no. 24, pp. 2819–2831, 2010. [13] M. Aslan, O. Güler, and Ü. Alver, “The Investigation of the Mechanical Properties of Sandwich Panel Composites with Different Surface and Core Materials,” Pamukkale Univ. J. Eng. Sci., vol. 24, no. 6, pp. 1062–1068, 2018.
  • [14] S. Georgiadis, A. J. Gunnion, R. S. Thomson, and B. K. Cartwright, “Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge,” Compos. Struct., vol. 86, pp. 258–268, 2008.
  • [15] A. S. Sayyad and Y. M. Ghugal, “Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature,” Compos. Struct., vol. 171, pp. 486–504, 2017.
  • [16] E. Burgaz and C. Kendirlioglu, “Thermomechanical behavior and thermal stability of polyurethane rigid nanocomposite foams containing binary nanoparticle mixtures,” Polym. Test., vol. 77, p. 105930, 2019.
  • [17] E. Burgaz, Polyurethane Insulation Foams for Energy and Sustainability. 2019.
  • [18] G. Otorgust, H. Dodiuk, S. Kenig, and R. Tenne, “Important insights into polyurethane nanocomposite-adhesives; a comparative study between INT-WS2 and CNT,” Eur. Polym. J., vol. 89, pp. 281–300, 2017.
  • [19] G. Zhou and M. D. Hill, “Impact damage and energy-absorbing characteristics and residual in-plane compressive strength of honeycomb sandwich panels,” J. Sandw. Struct. Mater., vol. 11, pp. 329–356, 2009.
  • [20] Y. M. Jen and L. Y. Chang, “Effect of thickness of face sheet on the bending fatigue strength of aluminum honeycomb sandwich beams,” Eng. Fail. Anal., vol. 16, pp. 1282–1293, 2009.
  • [21] Y. M. Jen, C. W. Ko, and H. Bin Lin, “Effect of the amount of adhesive on the bending fatigue strength of adhesively bonded aluminum honeycomb sandwich beams,” Int. J. Fatigue, vol. 31, pp. 455–462, 2009.
  • [22] A. Kaboorani and B. Riedl, “Nano-aluminum oxide as a reinforcing material for thermoplastic adhesives,” J. Ind. Eng. Chem., vol. 18, pp. 1076–1081, 2012.
  • [23] H. Akkus, H. Duzcukoglu, and O. S. Sahin, “Experimental research and use of finite elements method on mechanical behaviors of honeycomb structures assembled with epoxy-based adhesives reinforced with nanoparticles,” J. Mech. Sci. Technol., vol. 31, pp. 165–170, 2017.
  • [24] G. Otorgust, H. Dodiuk, S. Kenig, and R. Tenne, “Important insights into polyurethane nanocomposite-adhesives; a comparative study between INT-WS2 and CNT,” Eur. Polym. J., vol. 89, pp. 281–300, 2017. [25] A. Tounici and J. M. Martín-Martínez, “Addition of small amounts of graphene oxide in the polyol during the synthesis of waterborne polyurethane urea adhesives for improving their adhesion properties,” Int. J. Adhes. Adhes., vol. 104, pp. 102275, 2021.
  • [26] M. E. Kabir, M. C. Saha, and S. Jeelani, “Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite,” Mater. Sci. Eng. A, vol. 459, pp. 111–116, 2007.
  • [27] M. C. Saha, M. E. Kabir, and S. Jeelani, “Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles,” Mater. Sci. Eng. A, vol. 479, pp. 213–222, 2008.
  • [28] M. Uyaner and M. Kara, “Dynamic response of laminated composites subjected to low-velocity impact,” J. Compos. Mater., vol. 41, pp. 2877–2896, 2007.
  • [29] A. A. Mohammed, M. V. Hosur, and S. Jeelani, “Processing and characterization of nanophased polyurethane foams,” Cell. Polym., vol. 25, pp. 293–306, 2006.
  • [30] M. A. Bhuiyan, M. V. Hosur, and S. Jeelani, “Low-velocity impact response of sandwich composites with nanophased foam core and biaxial (± 45 °) braided face sheets,” Compos. Part B Eng., vol. 40, pp. 561–571, 2009 .
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Mehmet Emin Çetin 0000-0002-6314-5261

Yayımlanma Tarihi 30 Eylül 2021
Gönderilme Tarihi 12 Haziran 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Çetin, M. E. (2021). Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 9(3), 492-504. https://doi.org/10.29109/gujsc.951408

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526