Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Emniyetli Mekanik Sistemlerin Yanıt Yüzey Destekli Kuyruk Modelleme Yöntemiyle Güvenilirlik Tahmini

Yıl 2018, Cilt: 6 Sayı: 3, 481 - 491, 30.09.2018
https://doi.org/10.29109/gujsc.323116

Öz

Kuyruk
modelleme yöntemi yüksek emniyetli mekanik sistemlerin güvenilirlik tahmininde
kullanılan popüler bir yöntemdir. Klasik kuyruk modelleme yönteminde, önce
sınırlı sayıda sınır durum fonksiyonu hesabı yapılarak ampirik birikimli
dağılım fonksiyonu elde edilir, sonra da dağılımın kuyruk bölgesinin temsili
için uygun bir kuyruk modeli kullanılır. Kuyruk modeli oluşturulurken sadece
dağılımın kuyruk bölgesine denk gelen sınır durum fonksiyonu verileri
kullanılırken, arta kalan sınır durum fonksiyonu verileri ise boşa gider. Bu
çalışmada, boşa giden veri miktarının azaltılması amacıyla, sınır durum
fonksiyonu hesaplamalarının yanıt yüzey (YY) modeli kullanılarak kuyruk
bölgesine yönlendirilmesi esasına dayanan yanıt yüzey destekli kuyruk modelleme
(YYDKM) yöntemi önerilmiştir. YYDKM yönteminin hesap maliyetinin iki bileşeni
bulunmaktadır: YY modeli oluşturmakla ilgili hesap maliyeti ve kuyruk
modellemesiyle ilgili hesap maliyeti. YYDKM yönteminin doğruluğunun artırılması
için hesap bütçesinin iki bileşen arasında uygun bir şekilde tahsis edilmesi
gerekmektedir. Bu çalışmada, iki adet yapısal mekanik örnek problemi üzerinde
hesap bütçesinin iki bileşen arasında tahsisi incelenmiştir. YY oluşturmak için
tahsis edilen sınır durum fonksiyonu hesabı sayısının YY modelindeki katsayı
adetinin 1.5 ile 2 katı arasında olmasının ve bu maliyetten arta kalan hesap
bütçesinin kuyruk modellemesi için tahsis edilmesinin uygun olduğu görülmüştür.

Kaynakça

  • [1] Hasofer, A.M., Lind, N.C., “Exact and Invariant Second-Moment Code Format,” ASCE Journal of Engineering Mechanics Division, 100 (1974) 111–121.
  • [2] Fissler, B., Neumann, H.J., Rackwitz, R., “Quadratic Limit States in Structural Reliability,” ASCE Journal of the Engineering Mechanics Division, 105 (1979) 661-676.
  • [3] Hohenbichler, M., Gollwitzer, S., Kruse, W., Rackwitz, R., “New Light on First and Second-Order Reliability Methods,” Structural Safety, 4: 4 (1987) 267-284.
  • [4] Wu, Y.T., Millwater, H.R., Cruse, T.A. “Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions”, AIAA Journal, 28: 9 (1990) 1663-1669.
  • [5] Yamazaki, F., Shinozuka, M., “Neumann expansion for stochastic finite element analysis,” Journal of Engineering Mechanics, 114 (1988) 1335–1354.
  • [6] Rosenblueth, E., “Point Estimates for Probability Moments,” Applied Mathematical Modeling, 5 (1981) 329–335.
  • [7] Seo, H.S., Kwak, B.M., “Efficient Statistical Tolerance Analysis for General Distributions Using Three-Point Information,” International Journal of Production Research, 40: 4 (2002) 931–944.
  • [8] Sakamoto, J., Mori, Y., Sekioka, T., “Probability Analysis Method using Fast Fourier Transform and its Application”, Structural Safety, 19: 1 (1997) 21-36.
  • [9] Adduri, P.R., Penmetsa, R.C., “Fast Fourier Transform Based System Reliability Analysis,” International Journal of Reliability and Safety, 1: 3 (2007) 239-259.
  • [10] Acar, E., Rais-Rohani, M., Eamon, C.D., "Reliability Estimation Using Univariate Dimension Reduction and Extended Generalized Lambda Distribution, Handbook of Fitting Statistical Distributions with R, Editör: Karian Z.A., Dudewicz, E.J., CRC Press, 2010.
  • [11] Rubinstein, R.Y., Simulation and the Monte Carlo Method, Wiley, New York, NY, 1981.
  • [12] Melchers, R.E., “Importance Sampling in Structural Systems,” Structural Safety, 6 (1989) 3-10.
  • [13] Wu, Y.T., “Computational Methods for Efficient Structural Reliability and Reliability Sensitivity Analysis,” AIAA Journal, 32: 8 (1994) 1717-1723.
  • [14] Nie, J., Ellingwood, B.R., “Directional Methods for Structural Reliability Analysis,” Structural Safety, 22 (2000) 233-249.
  • [15] Au, S.K., Beck, J., “Estimation of small failure probabilities in high dimensions by subset simulation,” Probabilistic Engineering Mechanics, 16 (2001) 263–277.
  • [16] Castillo, E., Extreme Value Theory in Engineering, Academic Press, San Diego, CA, 1988.
  • [17] Maes, M.A., Breitung, K., “Reliability-Based Tail Estimation,” Proceedings of the IUTAM Symposium on Probabilistic Structural Mechanics (Advances in Structural Reliability Methods), San Antonio, Texas, 335-346, 1993.
  • [18] Caers, J., Maes, M., “Identifying Tails, Bounds, and End-Points of Random Variables,” Structural Safety, 20 (1998) 1-23.
  • [19] Kim, N.H., Ramu, P., Queipo, N.V., “Tail Modeling in Reliability-Based Design Optimization for Highly Safe Structural Systems,” 47th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, RI, Bildiri No AIAA 2006-1825, 2006.
  • [20] Ramu, P., Kim, N.H., Haftka, R.T., “Multiple Tail Median Approach for High Reliability Estimation,” Structural Safety , 32: 2 (2010) 124-137.
  • [21] Ramu, P., Krishna, M., 2012, "A Variable-fidelity and Convex Hull Approach for Reliability Estimates in Tail Modeling," 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Indianapolis, IN, Bildiri No AIAA 2012-5628, 2012.
  • [22] Acar, E., "Guided Tail Modeling for Efficient and Accurate Reliability Estimation of Highly Safe Mechanical Systems," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225: 5 (2011) 1237-1251.
  • [23] Rahman, S., Xu, H., "A Univariate Dimension Reduction Method for Multi-dimensional Integration in Stochastic Mechanics," Probabilistic Engineering Mechanics, 19 (2004) 393-408.
  • [24] Karian, Z.E., Dudewicz, E.J., McDonald, P., "The Extended Generalized Lambda Distribution System for Fitting Distributions to Data: History, Completion of Theory, Tables, Applications, The “Final Word” on Moment Fits," Communications in Statistics - Computation and Simulation, 25: 3 (1996) 611-642.
  • [25] Boos, D., "Using extreme value theory to estimate large percentiles," Technometrics, 26: 1 (1984) 33-39.
  • [26] Hasofer, A., “Non-Parametric Estimation of Failure Probabilities,” Mathematical Models for Structural Reliability, Editör: Casciati, F., Roberts, B., CRC Press, Boca Raton, FL, 195-226, 1996.
  • [27] Stocki, R., Lasota, R., Tauzowski, P., Szolc, T., “Scatter assessment of rotating system vibrations due to uncertain residual unbalances and bearing properties,” Computer Assisted Methods in Engineering and Science, 19: 2 (2012) 95-120.
  • [28] Lee, T.W., Kwak, B.M., “A Reliability-Based Optimal Design Using Advanced First Order Second Moment Method,” Mechanics of Structures and Machines, 15: 4 (1987) 523-542.
  • [29] Kumar S., Pippy, R.J., Acar, E., Kim, N.H, Haftka, R.T., “Approximate probabilistic optimization using exact-capacity-approximate-response-distribution (ECARD),” Structural and Multidisciplinary Optimization, 38 (2009) 613-626.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Erdem Acar

Yayımlanma Tarihi 30 Eylül 2018
Gönderilme Tarihi 22 Haziran 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 3

Kaynak Göster

APA Acar, E. (2018). Yüksek Emniyetli Mekanik Sistemlerin Yanıt Yüzey Destekli Kuyruk Modelleme Yöntemiyle Güvenilirlik Tahmini. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 6(3), 481-491. https://doi.org/10.29109/gujsc.323116

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526