Araştırma Makalesi
BibTex RIS Kaynak Göster

Sertleştirilmiş X40CrMoV5-1 Çeliğinin Tornalanmasında Kesme Kuvvetinin Deneysel ve Nümerik Olarak İncelenmesi

Yıl 2018, Cilt: 6 Sayı: 4, 765 - 773, 30.12.2018
https://doi.org/10.29109/gujsc.385823

Öz

X40CrMoV5-1
sıcak iş takım çeliği, enjeksiyon ve ekstrüzyon kalıplarında yüksek sıcaklık,
tokluk ve aşınma direnci gerektiren parçaların imalatında yaygın olarak
kullanılır. Diğer yandan, silindirik parçaların nihai geometriye
getirilmesinde, taşlama yerine sert tornalamanın tercih edilmesi üretim zamanı
ve maliyeti azaltırken, aynı zamanda parçanın yorulma mukavemetinde iyileşme sağlamaktadır.
Bu çalışmada, vakumla ısıl işlemde 55±1 HRC'ye sertleştirilmiş X40CrMoV5-1
takım çeliğinin seramik kesici takımlar (kaplamalı ve kaplamasız) kullanılarak tornalanmasında
elde edilen esas kesme kuvveti (Fc) değerleri deneysel ve nümerik olarak incelenmiştir.
Sert tornalama deneyleri, kesme parametrelerinin (ilerleme hızı, kesme hızı ve
kesme derinliği) farklı seviyeleri kullanılarak Taguchi L32 deney tasarımına
göre gerçekleştirilmiştir. Fc değerlerinin deneysel olarak belirlenmesinde Kistler
9257B dinamometre ve ekipmanları kullanılmıştır. Sonlu elemanlar yöntemine dayalı
olarak yapılan kesme simülasyonları DEFORM 3D yazılımında gerçekleştirilmiştir.
Ayrıca, kesme parametrelerinin Fc üzerindeki etkileri %95 güven düzeyinde yapılan
varyans analizi (ANOVA) ile belirlenmiştir. Fc değerleri için deneysel ve nümerik
analiz sonuçları arasındaki benzerlik kaplamasız takımlar için ortalama %94,
kaplamalı takımlar için %91 olarak bulunmuştur.  Deneysel verilere dayanılarak yapılan ANOVA
sonuçlarına göre en önemli faktörün kesme derinliği olduğu tespit edilmiştir.

Kaynakça

  • 1. H. K. Tonshoff, C. Arend, R. B. Amor, Cutting of hardened steel, CIRP Annals- Manufacturing Technologies 49 (2) (2000) 547–566. 2. F. Hashimoto, Y. B. Guo, A. W. Warren, Surface integrity difference between hard turned and ground surfaces and its impact on fatigue life, CIRP Annals- Manufacturing Technologies 55 (1) (2006) 81–84. 3. Y. Huang, Y. K. Chou, S. Y. Liang, CBN tool wear in hard turning: a survey on research progresses, International Journal of Advanced Manufacturing Technology 35 (2007) 443–453. 4. I. Meddour, M. A. Yallese, R. Khattabi, M. Elbah, L. Boulanouar, Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization, International Journal of Advanced Manufacturing Technology 77 (2015) 1387–1399. 5. H. Aouici, M. A. Yallese, K. Chaoui, T. Mabrouki, J. F. Rigal, Analysis of surface roughness and cutting force components in hard turning with CBN tool: prediction model and cutting conditions optimization, Measurement, 45 (2012) 344–353. 6. K. Bouachaa, M. A. Yallese, T. Mabrouki, J.F. Rigal, Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool, International Journal of Refractory Metals and Hard Materials, 28 (3) (2010) 349–361. 7. S. H. Oh, A Study on Cutting Force Characteristics in Hard Turning, International Journal of Control and Automation, 7 (3) (2014) 137-146. 8. V. Vijayaraghavan, A. Garg, L. Gao, R. Vijayaraghavan, G. Lu, A finite element based data analytics approach for modeling turning process of Inconel 718 alloys, Journal of Cleaner Production, doi:10.1016/j.jclepro.2016.04.010. 9. N. Yaşar, M. Sekmen, M.E. Korkmaz, M. Günay, AISI P20 çeliğinin işlenmesinde kesme kuvvetinin deneysel ve nümerik analizi, GU J Sci Part:C, 4(1) (2016) 625-631. 10. K. Gök, Development of three-dimensional finite element model to calculate the turning processing parameters in turning operations, Measurement 75 (2015) 57–68. 11. H. Yurtkuran, DIN 1.2344 Çeliğinin tornalanmasinda oluşan kesme kuvvetleri ve yüzey pürüzlülüğünün modellenmesi, Karabük Üniversitesi Fen Bilimleri, Yüksek Lisans Tezi, Mayıs (2013). 12. H. Yan, J. Hua, R. Shivpuri, Flow stress of AISI H13 die steel in hard machining, Materials and Design 28 (2007) 272–277. 13. L.Tang, J. Huang, L. Xie, Finite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with CBN cutting tool, International Journal of Advanced Manufacturing Technology, (2011) 53:1167–1181. 14. G.J. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the Seventh International Symposium on Ballistics, The Hague, (1983) 541–547. 15. A. Dorogoy and D. Rittel, Determination of the Johnson–Cook Material Parameters Using the SCS Specimen, Experimental Mechanics 49 (2009) 881–885. 16. Y. Karpat, T. Özel, 3-D FEA of Hard Turning: Investigation of PcBN cutting tool micro- geometry effects, Trans NAMRI/SME 35 (2007) 9-16. 17. H. Bil, S.E Kılıç, A.E. Tekkaya, “A comparison of orthogonal cutting data from experiments with three different finite element models”, International Journal of Machine Tools and Manufacture, 44 (9) (2004) 933-944. 18. Özel T. and Zeren E., Finite element method simulation of machining of AISI 1045 steel with a round edge cutting tool, Proceedings of 8th CIRP International Workshop on Modeling of Machining Operations, Germany, (2005) 533-542. 19. Özel T., The influence of friction models on finite element simulations of machining, International Journal of Machine Tools and Manufacture, (2006) 46 518.

Experimental and Numerical Investigation of Cutting Force in Turning of Hardened X40CrMoV5-1 Steel

Yıl 2018, Cilt: 6 Sayı: 4, 765 - 773, 30.12.2018
https://doi.org/10.29109/gujsc.385823

Öz

X40CrMoV5-1
hot work tool steel is commonly used in injection and extrusion molds and also
manufacturing of parts requiring high temperature, toughness and abrasion
resistance. On the other hand, the preference of hard turning instead of
grinding reduces the production time and cost, while improving the fatigue
strength of the part in the case of putting the cylindrical parts into final
form. In this study, the main cutting force (Fc) was investigated
experimentally and numerically during machining of hardened X40CrMoV5-1 tool
steel with vacuum and heat treatment to 55 ± 1 HRC by coated and uncoated
ceramic inserts. Hard turning experiments were performed according to the
Taguchi L32 experimental design using different levels of feed rate, cutting speed
and depth of cut. Kistler 9257B dynamometer and equipments were used in
experimentally determination of Fc values. Cutting simulations based on the
finite element method were performed in DEFORM 3D software. In addition, the
effects of cutting parameter on Fc were identified via analysis of variance
(ANOVA) at 95% confidence level. The similarity between experimental and
numerical analysis results for Fc values ​​was found to be 94% for uncoated
tools and 91% for coated tools. It was determined that depth of cut is the most
significant factor according to ANOVA results obtained by using experimental
data.

Kaynakça

  • 1. H. K. Tonshoff, C. Arend, R. B. Amor, Cutting of hardened steel, CIRP Annals- Manufacturing Technologies 49 (2) (2000) 547–566. 2. F. Hashimoto, Y. B. Guo, A. W. Warren, Surface integrity difference between hard turned and ground surfaces and its impact on fatigue life, CIRP Annals- Manufacturing Technologies 55 (1) (2006) 81–84. 3. Y. Huang, Y. K. Chou, S. Y. Liang, CBN tool wear in hard turning: a survey on research progresses, International Journal of Advanced Manufacturing Technology 35 (2007) 443–453. 4. I. Meddour, M. A. Yallese, R. Khattabi, M. Elbah, L. Boulanouar, Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization, International Journal of Advanced Manufacturing Technology 77 (2015) 1387–1399. 5. H. Aouici, M. A. Yallese, K. Chaoui, T. Mabrouki, J. F. Rigal, Analysis of surface roughness and cutting force components in hard turning with CBN tool: prediction model and cutting conditions optimization, Measurement, 45 (2012) 344–353. 6. K. Bouachaa, M. A. Yallese, T. Mabrouki, J.F. Rigal, Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool, International Journal of Refractory Metals and Hard Materials, 28 (3) (2010) 349–361. 7. S. H. Oh, A Study on Cutting Force Characteristics in Hard Turning, International Journal of Control and Automation, 7 (3) (2014) 137-146. 8. V. Vijayaraghavan, A. Garg, L. Gao, R. Vijayaraghavan, G. Lu, A finite element based data analytics approach for modeling turning process of Inconel 718 alloys, Journal of Cleaner Production, doi:10.1016/j.jclepro.2016.04.010. 9. N. Yaşar, M. Sekmen, M.E. Korkmaz, M. Günay, AISI P20 çeliğinin işlenmesinde kesme kuvvetinin deneysel ve nümerik analizi, GU J Sci Part:C, 4(1) (2016) 625-631. 10. K. Gök, Development of three-dimensional finite element model to calculate the turning processing parameters in turning operations, Measurement 75 (2015) 57–68. 11. H. Yurtkuran, DIN 1.2344 Çeliğinin tornalanmasinda oluşan kesme kuvvetleri ve yüzey pürüzlülüğünün modellenmesi, Karabük Üniversitesi Fen Bilimleri, Yüksek Lisans Tezi, Mayıs (2013). 12. H. Yan, J. Hua, R. Shivpuri, Flow stress of AISI H13 die steel in hard machining, Materials and Design 28 (2007) 272–277. 13. L.Tang, J. Huang, L. Xie, Finite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with CBN cutting tool, International Journal of Advanced Manufacturing Technology, (2011) 53:1167–1181. 14. G.J. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the Seventh International Symposium on Ballistics, The Hague, (1983) 541–547. 15. A. Dorogoy and D. Rittel, Determination of the Johnson–Cook Material Parameters Using the SCS Specimen, Experimental Mechanics 49 (2009) 881–885. 16. Y. Karpat, T. Özel, 3-D FEA of Hard Turning: Investigation of PcBN cutting tool micro- geometry effects, Trans NAMRI/SME 35 (2007) 9-16. 17. H. Bil, S.E Kılıç, A.E. Tekkaya, “A comparison of orthogonal cutting data from experiments with three different finite element models”, International Journal of Machine Tools and Manufacture, 44 (9) (2004) 933-944. 18. Özel T. and Zeren E., Finite element method simulation of machining of AISI 1045 steel with a round edge cutting tool, Proceedings of 8th CIRP International Workshop on Modeling of Machining Operations, Germany, (2005) 533-542. 19. Özel T., The influence of friction models on finite element simulations of machining, International Journal of Machine Tools and Manufacture, (2006) 46 518.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nafiz Yaşar

Yayımlanma Tarihi 30 Aralık 2018
Gönderilme Tarihi 29 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 4

Kaynak Göster

APA Yaşar, N. (2018). Sertleştirilmiş X40CrMoV5-1 Çeliğinin Tornalanmasında Kesme Kuvvetinin Deneysel ve Nümerik Olarak İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 6(4), 765-773. https://doi.org/10.29109/gujsc.385823

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526