Olasılıksal eniyileme algoritmaları çalışmalarının birçok aşamasında rastlantısal veri kullanmaktadırlar ve performansları büyük oranda bu rastlantısal verinin dağılımına göre değişiklik göstermektedir. Bu noktadan hareketle farklı rastlantısal veri kaynaklarının eniyileme algoritmalarının performansına etkisi son zamanlardaki birçok çalışmanın odak noktası olmuştur. Kaotik eşlem fonksiyonları matematiksel özellikleri sonucu rastlantısal veri kaynağı olarak kullanılmaya oldukça elverişlidir. Bu çalışmada kaotik eşlem fonksiyonlarının popülasyon tabanlı evrimsel bir algoritma olan göç eden kuşlar algoritmasına etkisi bilgisayar mimarisinin güncel problemlerinden biri olan görev dağıtım problemi üzerinde deneysel olarak incelenmiştir. Deneyler neticesinde bir kısım kaotik eşlem fonksiyonlarının ele alınan problem için uygun olmadığı gözlense de, klasik rastlantısal veri üretme algoritmaları ile başa baş performans sergileyen kaotik eşlem fonksiyonlarının da bulunduğu görülmüştür.
Bölüm | Makaleler |
---|---|
Yazarlar | |
Yayımlanma Tarihi | 21 Aralık 2016 |
Gönderilme Tarihi | 15 Haziran 2016 |
Yayımlandığı Sayı | Yıl 2016 Cilt: 4 Sayı: 4 |