Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 7 Sayı: 2, 450 - 471, 11.06.2019
https://doi.org/10.29109/gujsc.556509

Öz

Kaynakça

  • Magnetics® Databook, 2004 Magnetics Catalog, www.mag-inc.com
  • Ferroxcube® Databook, “Soft Ferrites and Accessories”, www.ferroxcube.com
  • Siemens® Databook, “Ferrites and Accessories”, www.epcos.com
  • TDK® Databook, “Ferrites for SMPS”, www.tdk.com
  • Dujic, D., Kieferndorf, F., & Canales, F. (2012). Power electronic transformer technology for traction applications–an overview. Electronics, 16(1), 50-56.
  • Du, Y., Lukic, S., Jacobson, B., & Huang, A. (2011, September). Review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure. In 2011 IEEE Energy Conversion Congress and Exposition (pp. 553-560). IEEE.
  • Lee, Y. J., Khaligh, A., & Emadi, A. (2009). Advanced integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles. IEEE Transactions on vehicular technology, 58(8), 3970-3980.
  • Wang, F., Duarte, J. L., & Hendrix, M. A. (2011). Grid-interfacing converter systems with enhanced voltage quality for microgrid application—Concept and implementation. IEEE Transactions on power electronics, 26(12), 3501-3513.
  • Rocabert, J., Luna, A., Blaabjerg, F., & Rodriguez, P. (2012). Control of power converters in AC microgrids. IEEE transactions on power electronics, 27(11), 4734-4749.
  • Revathi, B. S., & Prabhakar, M. (2016). Non isolated high gain DC-DC converter topologies for PV applications–A comprehensive review. Renewable and Sustainable Energy Reviews, 66, 920-933.
  • Zhao, Z., Xu, M., Chen, Q., Lai, J. S., & Cho, Y. (2012). Derivation, analysis, and implementation of a boost–buck converter-based high-efficiency PV inverter. IEEE Transactions on Power Electronics, 27(3), 1304-1313.
  • Buning, E. A. (2010). Electric drives in agricultural machinery-approach from the tractor side. Journal of Agricultural Engineering, 47(3), 30-35.
  • Burmester, D., Rayudu, R., Seah, W., & Akinyele, D. (2017). A review of nanogrid topologies and technologies. Renewable and Sustainable Energy Reviews, 67, 760-775.
  • Hemetsberger F. A., 2003. An Investigation Of Power Quality Problems In A Remote Mine Site, M.S. Thesis, The University of Queensland.
  • Mcmurray, W. (1970). U.S. Patent No. 3,517,300. Washington, DC: U.S. Patent and Trademark Office.
  • Brooks, J. L. (1980). Solid State Transformer Concept Development (No. CEL-TN-1575). CIVIL ENGINEERING LAB (NAVY) PORT HUENEME CA.
  • L. Yang, T. Zhao, J. Wang, A.Q. Huang, “Design and Analysis of a 270kW Five-level DC/DC Converter for Solid State Transformer Using 10kV SiC Power Devices,” in IEEE 2007 Power Electronics Specialists Conference, 2007, pp.245-251.
  • E.R.Jr. Ronan, S.D. Sudhoff, S.F. Glover, D.L. Galloway, “Application of Power Electronics to the Distribution Transformer,” in IEEE 2000 Applied Power Electronics Conference, 2000, vol.2, pp.861-867.
  • Lotfi, A. W., & Wilkowski, M. A. (2001). Issues and advances in high-frequency magnetics for switching power supplies. Proceedings of the IEEE 89.6, 833-845.
  • Shi, Y., Li, R., Xue, Y., & Li, H. (2016). High-frequency-link-based grid-tied PV system with small DC-link capacitor and low-frequency ripple-free maximum power point tracking. IEEE Transactions on Power Electronics, 31(1), 328-339.
  • H. S. Qin and J. W. Kimball, “AC-AC dual active bridge converter for solid state transformer,” in Proc. IEEE ECCE, Sep. 2009, pp. 3039–3044.
  • A. Abedini and T. Lipo, “A novel topology of solid state transformer,” in Proc. PEDSTC, 2010, pp. 101–105.
  • M. R. Banaei and E. Salary, “Power quality improvement based on novel power electronic transformer,” in Proc. PEDSTC., 2011, pp. 286–291.
  • A. J. Jin, H. T. Li, and S. L. Li, “A new matrix type three-phase fourwire power electronic transformer,” in Proc. 37th IEEEPESC, Jun. 2006, pp. 1–6.
  • K. K. Mohapatra and N. Mohan, “Matrix converter fed open-ended power electronic transformer for power system application,” in Proc. IEEE PES 21st Century, Jul. 2008, pp. 1–6.
  • H. Mirmousa and M. R. Zolghadri, “A novel circuit topology for three-phase four-wire distribution electronic power transformer,” in Proc. 7th Int. Conf. Power Drive Syst., Nov. 2007, pp. 1215–1222.
  • M. Sabahi, A. Y. Goharrizi, S. H. Hosseini, M. B. B. Sharifian, and G. B. Gharehpetian, “Flexible power electronic transformer,” IEEE Trans. Power Electron., vol. 25, no. 8, pp. 2159–2169, Aug. 2010.
  • M. Sabahi, S. H. Hosseini, M. B. Sharifian, A. Y. Goharrizi, and G. B. Gharehpetian, “Zero-voltage switching bi-directional power electronic transformer,” IET. Power Electron., vol. 3, no. 5, pp. 818–828, 2010.
  • P. Drabek, Z. Peroutka, M. Pittermann, and M. Cedl, “New configuration of traction converter with medium frequency transformer using matrix converters,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5041–5048, Nov. 2011.
  • N. Hugo, P. Stefanutti, M. Pellerin, and A. Akdag, “Power electronic traction transformer,” in Proc. EPE, 2007, pp. 1–10.
  • M. Carpita, M. Marchesoni, M. Pellerin, and D. Moser, “Multilevel converter for traction applications: Small-scale prototype test results,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2203–2212, May 2008.
  • M. Glinka and R. Marquardt, “A new AC/AC multilevel converter family,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 662–669, Jun. 2005.
  • Mao, X., Falcones, S., & Ayyanar, R. (2010). Energy-based control design for a solid-state transformer. In Power and Energy Society General Meeting. IEEE (pp. 1-7). IEEE.
  • S. Bifaretti, P. Zanchetta, A. Watson, L. Tarisciotti, and J. C. Clare, “Advanced power electronic conversion and control system for universal and flexible power management,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 231–243, Jun. 2011.
  • T. F. Zhao, L. Y. Yang, J. Wang, and A. Q. Huang, “270 kVA solid state transformer based on 10 kV SiC power devices,” in Proc. IEEE. Electric Ship Tech. Symp., May 2007, pp. 145–149.
  • E. R. Ronan, S. D. Sudhoff, S. F. Glover, and D. L. Galloway, “A power electronic-based distribution transformer,” IEEE Trans. Power Delivery, vol. 17, no. 2, pp. 537–543, Apr. 2002.
  • J. S. Lai, A. Maitra, A. Mansoor, and F.Goodman, “Multilevel intelligent universal transformer for medium voltage application,” in Proc. IEEE Ind. Appl. Conf., Oct. 2005, pp. 1893–1899.
  • G. Y. Wang, S. Baek, J. Elliott, A. Kadavelugu, F. Wang, X. She, S. Dutta, Y. Liu, T. F. Zhao, W. X. Yao, R. Gould, S. Bhattacharya, and A. Q. Huang, “Design and hardware implementation of Gen-I silicon based solid state transformer,” in Proc. IEEE. Appl. Power Electron. Conf., Mar. 2011, pp. 1344–1349.
  • D. Grider, M. Das, A. Agarwal, J. Palmour, S. Leslie, J. Ostop, R. Raju, M. Schutten, and A. Hefner, “10kV/120A SiC DMOSFET half-bridge power modules for 1 MVA solid state power substation,” in Proc. IEEE Electr. Ship Tech. Symp., Apr. 2011, pp. 131–134.
  • Energy Conversation Program for Commercial Equipment, Distribution Transformers Energy Conversation Standards, CFR Standard 431, Oct. 2007.
  • K. Hatua, S. Dutta, A. Tripathi, S. Baek, G. Karimi, and S. Bhattacharya, “Transformerless intelligent power substation design with 15 kV SiC IGBT for grid interconnection,” in Proc. IEEE ECCE, Sep. 2011, pp. 4225–4232.
  • G. Ortiz, M. Leibl, J. W. Kolar, and O. Apeldoorn, “Medium frequency transformer for solid-state-transformer application—Design and experimental verification,” in Proc. IEEE PEDS, Apr. 2013, pp. 1285–1290.
  • H. F. Fan and H. Li, “High frequency transformer isolated bidirectional DC-DC converter modules with high efficiency over wide load range for 20 kVA solid state transformer,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3599–3608, Dec. 2011.
  • G. Brando, A. Dannier, and A. D. Pizzo, “A simple predictive control technique of power electronic transformers with high dynamic features,” in Proc. IEEE PEMD, Jan. 2010, pp. 1–6.
  • T. Komrska and Z. Peroutka, “Main traction converter with mediumfrequency transformer: Control of converters around MF transformer,” in Proc. SPEEDAM., 2008, pp. 1194–1198.
  • M. Stenier and H. Reinold, “Medium frequency topology in railway applications,” in Proc. EPE ECCE Eur., 2007, pp. 1–10.
  • M. Claessens, D. Dujic, J. K. Steinke, P. Stefanutti, and C. Vetterli, “Traction transformation: A power electronic traction transformer (PETT),” ABB Rev., vol. 3, no. 16, pp. 1–3, Jan. 2012.
  • Falcones, S., Mao, X., & Ayyanar, R. (2010, July). Topology comparison for solid state transformer implementation. In Power and Energy Society General Meeting, 2010 IEEE (pp. 1-8).
  • Wang, D., Mao, C., Lu, J., Fan, S., & Chen, L. (2005). The research on characteristics of electronic power transformer for distribution system. In 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific (pp. 1-5). IEEE.
  • Wang, D., Mao, C., Lu, J., Fan, S., & Chen, L. (2005). The research on characteristics of electronic power transformer for distribution system. In 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific (pp. 1-5). IEEE.
  • H. I. Eini and S. Farhangi, “Analysis and design of power electronic transformer for medium voltage levels,” in Proc. 37th IEEE PESC, Jun. 2006, pp. 1–5.
  • Zhao, B., Song, Q., & Liu, W. (2015). A Practical Solution of High-Frequency-Link Bidirectional Solid-State Transformer Based On Advanced Components in Hybrid Microgrid. IEEE Transactions on Industrial Electronics, 62(7), 4587-4597.
  • S. Bifaretti, P. Zanchetta, A. Watson, L. Tarisciotti, and J. C. Clare, “Advanced power electronic conversion and control system for universal and flexible power management,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 231–243, Jun. 2011.
  • S. Bhattacharya, T. Zhao, G. Wang, S. Dutta, S. Baek, Y. Du, B. Parkhideh, X. Zhou, A.Q. Huang, “Design and Development of Generation-I Silicon based Solid State Transformer”, Applied Power Electronics Conference and Exposition, APEC 2010, palm Springs, CA, February 21-25, 2010, pp. 1666-1673
  • Wang, L., Zhang, D., Wang, Y., Wu, B., & Athab, H. S. (2016). Power and voltage balance control of a novel three-phase solid-state transformer using multilevel cascaded H-bridge inverters for microgrid applications. IEEE Transactions on Power Electronics, 31(4), 3289-3301.
  • Kim, J. S., Choe, G. Y., Jung, H. M., Lee, B. K., Cho, Y. J., & Han, K. B. (2010, September). Design and implementation of a high-efficiency on-board battery charger for electric vehicles with frequency control strategy. In 2010 IEEE Vehicle Power and Propulsion Conference (pp. 1-6). IEEE.
  • Liu, C., Gu, B., Lai, J. S., Wang, M., Ji, Y., Cai, G., ... & Sun, P. (2013). High-efficiency hybrid full-bridge–half-bridge converter with shared ZVS lagging leg and dual outputs in series. IEEE Transactions on Power Electronics, 28(2), 849-861.
  • Yilmaz, M., & Krein, P. T. (2013). Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE transactions on Power Electronics, 28(5), 2151-2169.
  • Gu, B., Lai, J. S., Kees, N., & Zheng, C. (2013). Hybrid-switching full-bridge DC–DC converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers. IEEE Transactions on Power Electronics, 28(3), 1132-1144.
  • Khaligh, A., & Dusmez, S. (2012). Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Transactions on Vehicular Technology, 61(8), 3475-3489.
  • Falcones, S., Ayyanar, R., & Mao, X. (2013). A DC–DC multiport-converter-based solid-state transformer integrating distributed generation and storage. IEEE Transactions on Power Electronics, 28(5), 2192-2203.
  • Jung, Y., Yu, G., Choi, J., & Choi, J. (2002, May). High-frequency DC link inverter for grid-connected photovoltaic system. In Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002. (pp. 1410-1413). IEEE.
  • Shi, J., Gou, W., Yuan, H., Zhao, T., & Huang, A. Q. (2011). Research on voltage and power balance control for cascaded modular solid-state transformer. IEEE Transactions on Power Electronics, 26(4), 1154-1166.
  • She, X., Huang, A. Q., & Wang, G. (2011). 3-D space modulation with voltage balancing capability for a cascaded seven-level converter in a solid-state transformer. IEEE Transactions on Power Electronics, 26(12), 3778-3789.
  • Zhao, T., Wang, G., Bhattacharya, S., & Huang, A. Q. (2013). Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer. IEEE Transactions on Power Electronics, 28(4), 1523-1532.
  • Krishnaswami, H. (2011, September). Photovoltaic microinverter using single-stage isolated high-frequency link series resonant topology. In 2011 IEEE Energy Conversion Congress and Exposition (pp. 495-500). IEEE.
  • T. Shimizu, K. Wada, and N. Nakamura, “A flyback type single phase utility interactive inverter with low frequency ripple current reduction on the DC input for an AC photovoltaic module system,” in Proc. IEEE PESC’02, vol. 3, 2002, pp. 1483–1488.
  • S. B. Kjaer and F. Blaabjerg, “Design optimization of a single phase inverter for photovoltaic applications,” in Proc. IEEE PESC’03, vol. 3, 2003, pp. 1183–1190.
  • S. B. Kjaer and F. Blaabjerg, “Design optimization of a single phase inverter for photovoltaic applications,” in Proc. IEEE PESC’03, vol. 3, 2003, pp. 1183–1190.
  • N. P. Papanikolaou, E. C. Tatakis, A. Critsis, and D. Klimis, “Simplified high frequency converter in decentralized grid-connected PV systems: a novel low-cost solution,” in Proc. EPE’03, 2003, CD-ROM.
  • S. B. Kjaer, “Design and control of an inverter for photovoltaic applications,” Ph.D. dissertation, Inst. Energy Technol., Aalborg University, Aalborg East, Denmark, 2004/2005.
  • M. Meinhardt, T. O’Donnell, H. Schneider, J. Flannery, C. O. Mathuna, P. Zacharias, and T. Krieger, “Miniaturised ‘low profile’ module integrated converter for photovoltaic applications with integrated magnetic components,” in Proc. IEEE APEC’99, vol. 1, 1999, pp. 305–311.
  • M. Nagao and K. Harada, “Power flow of photovoltaic system using buck-boost PWM power inverter,” in Proc. PEDS’97, vol. 1, 1997, pp. 144–149.
  • M. Nagao and K. Harada, “Power flow of photovoltaic system using buck-boost PWM power inverter,” in Proc. PEDS’97, vol. 1, 1997, pp. 144–149.
  • S. Mekhilef, N. A. Rahim, and A. M. Omar, “A new solar energy conversion scheme implemented using grid-tied single phase inverter,” in Proc. IEEE TENCON’00, vol. 3, 2000, pp. 524–527.
  • D. C. Martins and R. Demonti, “Grid connected PV system using two energy processing stages,” in Conf. Rec. 29th IEEE Photovoltaic Specialists Conf., 2002, pp. 1649–1652.
  • -, “Photovoltaic energy processing for utility connected system,” in Proc. IEEE IECON’01, vol. 2, 2001, pp. 1292–1296.
  • A. Lohner, T. Meyer, and A. Nagel, “A new panel-integratable inverter concept for grid-connected photovoltaic systems,” in Proc. IEEE ISIE’96, vol. 2, 1996, pp. 827–831.
  • Wang, Z., & Li, H. (2011, March). Integrated MPPT and bidirectional battery charger for PV application using one multiphase interleaved three-port dc-dc converter. In 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 295-300). IEEE.
  • Cacciato, M., Consoli, A., Attanasio, R., & Gennaro, F. (2010). Soft-switching converter with HF transformer for grid-connected photovoltaic systems. IEEE Transactions on Industrial Electronics, 57(5), 1678-1686.
  • M. Meinhardt, T. O’Donnell, H. Schneider, J. Flannery, C.O. Mathuna, P. Zacharias, T. Krieger, Miniaturised “Low Profile” module integrated converter for photovoltaic applications with integrated magnetic components, IEEE proc. Of the 14th annual applied power electronics conference and exposition (APEC’99), vol. 1, pp. 305-311, 1999.
  • A. Lohner, T. Meyer, A. Nagel, A new panel-integratable inverter concept for grid-connected photovoltaic systems, IEEE proc. of the 1996 international symposium on industrial electronics (ISIE’96), vol. 2, pp. 827-831, 1996.
  • C. Prapanavarat, M. Barnes, N. Jenkins, Investigation of the performance of a photovoltaic AC module, IEE proc. of generation, transmission and distribution, vol. 149, no. 4, pp. 472-478, July 2002.
  • S.W.H. de Haan, H. Oldenkamp, E.J. Wildenbeest, Test results of a 130 W AC module; a modular solar AC power station, IEEE proc. of the 24th photovoltaic specialists conference, vol. 1, pp. 925-928, 1994.
  • S.W.H. de Haan, H. Oldenkamp, C.F.A Frumau, W. Bonin, Development of a 100 W resonant inverter for ac-modules, Proc. of the 12th European photovoltaic solar energy conference, 1994.
  • C. Dorofte, “Comparative analysis of four dc/dc converters for photovoltaic grid interconnection,” Aalborg niv./Powerlynx A/S, Aalborg East, Denmark, Tech. Rep., 2001.
  • R. Teodorescu, F. Blaabjerg, U. Borup, and M. Liserre, “A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation,” in Proc. IEEE APEC’04, vol. 1, 2004, pp. 580–586.
  • R. Teodorescu, F. Blaabjerg, U. Borup, and M. Liserre, “A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation,” in Proc. IEEE APEC’04, vol. 1, 2004, pp. 580–586.
  • L. Asiminoaei, R. Teodorescu, F. Blaabjerg, and U. Borup, “A new method of on-line grid impedance estimation for PV inverter,” in Proc. IEEE APEC’04, vol. 3, 2004, pp. 1527–1533.
  • L. Asiminoaei, R. Teodorescu, F. Blaabjerg, and U. Borup, “A new method of on-line grid impedance estimation for PV inverter,” in Proc. IEEE APEC’04, vol. 3, 2004, pp. 1527–1533.
  • A. V. Timbus, R. Teodorescu, F. Blaabjerg, and U. Borup, “Online grid measurement and ENS detection for PV inverter running on highly inductive grid,” IEEE Power Electron. Lett., vol. 2, no. 3, pp. 77–82, Sep. 2004.
  • A. V. Timbus, R. Teodorescu, F. Blaabjerg, and U. Borup, “Online grid measurement and ENS detection for PV inverter running on highly inductive grid,” IEEE Power Electron. Lett., vol. 2, no. 3, pp. 77–82, Sep. 2004.
  • C. Dorofte, “Comparative analysis of four dc/dc converters for photovoltaic grid interconnection,” Aalborg Univ./Powerlynx A/S, Aalborg East, Denmark, Tech. Rep., 2001.
  • -, “Design of a dc/dc converter for photovoltaic grid interconnection,” Aalborg Univ./Powerlynx A/S, Aalborg East, Denmark, Tech. Rep., 2001.
  • Liu, T., Yang, X., Chen, W., Li, Y., Xuan, Y., Huang, L., & Hao, X. (2018). Design and implementation of high efficiency control scheme of dual active bridge based 10kV/1MW solid state transformer for PV application. IEEE Transactions on Power Electronics.
  • Rubino, L., Guida, B., Liccardo, F., Marino, P., & Cavallo, A. (2010, July). Buck-boost DC/DC converter for aeronautical applications. In 2010 IEEE International Symposium on Industrial Electronics (pp. 2690-2695). IEEE.
  • Kim, E. H., & Kwon, B. H. (2009). High step-up resonant push–pull converter with high efficiency. IET Power Electronics, 2(1), 79-89.
  • Delshad, M., & Farzanehfard, H. (2011). High step-up zero-voltage switching current-fed isolated pulse width modulation DC–DC converter. IET power electronics, 4(3), 316-322.
  • A. Itoher, T. Meyer, and A. Nagel, “A new panel-integratable inverter concept for grid-connected photovoltaic systems”, Int. Symp. on Indust. Electronics (ISIE) IEEE 1, 827–831 (1996).
  • Q. Li and P. Wolfs, “An analysis of a resonant half bridge dual converter operating in continuous and discontinuous modes”, 33rd Annual Power Electronics Specialists Conf. (PESC) IEEE 1, 1313–1318 (2002).
  • D. Li, B. Liu, B. Yuan, X. Yang, J. Duan, and J. Zhai, “A high step-up current fed multi-resonant converter with output voltage doubler”, 26th Applied Power Electronics Conf. and Exposition (APEC) IEEE 1, CD-ROM (2011).
  • Yuan, B., Yang, X., & Li, D. (2010, September). A high efficiency current fed multi-resonant converter for high step-up power conversion in renewable energy harvesting. In 2010 IEEE Energy Conversion Congress and Exposition (pp. 2637-2641). IEEE.
  • Choi, W. Y., Song, S. G., Park, S. J., Kim, K. H., & Lim, Y. C. (2009, October). Photovoltaic module integrated converter system minimizing input ripple current for inverter load. In INTELEC 2009-31st International Telecommunications Energy Conference (pp. 1-4). IEEE.
  • Fan, H., & Li, H. (2011). High-frequency transformer isolated bidirectional DC–DC converter modules with high efficiency over wide load range for 20 kVA solid-state transformer. IEEE Transactions on Power Electronics, 26(12), 3599-3608.
  • Emanet, H. (2001). Yüksek Frekanslı Manyetik Malzemelerde Deri Ve Yaklaşım Etkisi Sonucu Oluşan İletken Kayıplarının Hesaplanması (Doctoral dissertation, Fen Bilimleri Enstitüsü).
  • Sclocchi, M. Switching Power Supply Design: LM5030 Push-Pull Converter.
  • Aydemir, T., Koparan, A., & Şimşek, O. 200 Amper, Yüksek Frekans Anahtarlamalı DA Kaynak Makinesinin Tasarımı ve Gerçeklestirilmesi/Design and Implementation of a 200 Ampere High Frequency Switching DC Welding Machine. EMO BİLİMSEL DERGİ, 2(3), 51-61.

Güç Elektroniği Transformatörlerinin İncelenmesi ve Bir DA/DA Dönüştürücü Uygulaması

Yıl 2019, Cilt: 7 Sayı: 2, 450 - 471, 11.06.2019
https://doi.org/10.29109/gujsc.556509

Öz

Malzeme
bilimindeki gelişmelere paralel olarak artan güç-boyut oranı ile özellikle
ağırlığın önemli olduğu hava, kara, deniz araçları ile uzay teknolojilerinde
yüksek frekans transformatörleri (YFT)’ne olan talep artış göstermektedir.
Özellikle YFT’lerin yarı iletken anahtarlar ile birlikte kullanılması sonucunda
elde edilen güç dönüştürücüler (Güç Elektroniği Transformatörü – GET),
elektrikli araçlardan uzay araçlarına, dağıtık üretim ve depolama birimlerinin
şebeke entegrasyonuna kadar birçok uygulamada geniş bir kullanım alanı
bulmuşlardır. Bu çalışmada GET yapıları incelenerek, DA/DA dönüştürme yapan tam
köprü dönüştürücünün benzetim ve uygulaması gerçekleştirilmiştir. Çalışmada ilk
olarak GET’ler incelenmiş ve devre topolojileri ile kullanım alanları analiz
edilmiştir. Daha sonra tam köprü tipi dönüştürücü topolojisi kullanılarak DA/DA
dönüştürme yapan bir çevirici tasarımı yapılmış ve benzetimi
gerçekleştirilmiştir. Benzetimi gerçekleştirilen dönüştürücü için gerekli
malzeme seçimi yapılarak prototip hazırlanmış ve deneysel çalışmalar
tamamlanmıştır. Deneysel kurulumu tamamlanan GET, 22 kHz anahtarlama
frekansında test edilerek benzetim ve deneysel sonuçlar sunulmuştur. 

Kaynakça

  • Magnetics® Databook, 2004 Magnetics Catalog, www.mag-inc.com
  • Ferroxcube® Databook, “Soft Ferrites and Accessories”, www.ferroxcube.com
  • Siemens® Databook, “Ferrites and Accessories”, www.epcos.com
  • TDK® Databook, “Ferrites for SMPS”, www.tdk.com
  • Dujic, D., Kieferndorf, F., & Canales, F. (2012). Power electronic transformer technology for traction applications–an overview. Electronics, 16(1), 50-56.
  • Du, Y., Lukic, S., Jacobson, B., & Huang, A. (2011, September). Review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure. In 2011 IEEE Energy Conversion Congress and Exposition (pp. 553-560). IEEE.
  • Lee, Y. J., Khaligh, A., & Emadi, A. (2009). Advanced integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles. IEEE Transactions on vehicular technology, 58(8), 3970-3980.
  • Wang, F., Duarte, J. L., & Hendrix, M. A. (2011). Grid-interfacing converter systems with enhanced voltage quality for microgrid application—Concept and implementation. IEEE Transactions on power electronics, 26(12), 3501-3513.
  • Rocabert, J., Luna, A., Blaabjerg, F., & Rodriguez, P. (2012). Control of power converters in AC microgrids. IEEE transactions on power electronics, 27(11), 4734-4749.
  • Revathi, B. S., & Prabhakar, M. (2016). Non isolated high gain DC-DC converter topologies for PV applications–A comprehensive review. Renewable and Sustainable Energy Reviews, 66, 920-933.
  • Zhao, Z., Xu, M., Chen, Q., Lai, J. S., & Cho, Y. (2012). Derivation, analysis, and implementation of a boost–buck converter-based high-efficiency PV inverter. IEEE Transactions on Power Electronics, 27(3), 1304-1313.
  • Buning, E. A. (2010). Electric drives in agricultural machinery-approach from the tractor side. Journal of Agricultural Engineering, 47(3), 30-35.
  • Burmester, D., Rayudu, R., Seah, W., & Akinyele, D. (2017). A review of nanogrid topologies and technologies. Renewable and Sustainable Energy Reviews, 67, 760-775.
  • Hemetsberger F. A., 2003. An Investigation Of Power Quality Problems In A Remote Mine Site, M.S. Thesis, The University of Queensland.
  • Mcmurray, W. (1970). U.S. Patent No. 3,517,300. Washington, DC: U.S. Patent and Trademark Office.
  • Brooks, J. L. (1980). Solid State Transformer Concept Development (No. CEL-TN-1575). CIVIL ENGINEERING LAB (NAVY) PORT HUENEME CA.
  • L. Yang, T. Zhao, J. Wang, A.Q. Huang, “Design and Analysis of a 270kW Five-level DC/DC Converter for Solid State Transformer Using 10kV SiC Power Devices,” in IEEE 2007 Power Electronics Specialists Conference, 2007, pp.245-251.
  • E.R.Jr. Ronan, S.D. Sudhoff, S.F. Glover, D.L. Galloway, “Application of Power Electronics to the Distribution Transformer,” in IEEE 2000 Applied Power Electronics Conference, 2000, vol.2, pp.861-867.
  • Lotfi, A. W., & Wilkowski, M. A. (2001). Issues and advances in high-frequency magnetics for switching power supplies. Proceedings of the IEEE 89.6, 833-845.
  • Shi, Y., Li, R., Xue, Y., & Li, H. (2016). High-frequency-link-based grid-tied PV system with small DC-link capacitor and low-frequency ripple-free maximum power point tracking. IEEE Transactions on Power Electronics, 31(1), 328-339.
  • H. S. Qin and J. W. Kimball, “AC-AC dual active bridge converter for solid state transformer,” in Proc. IEEE ECCE, Sep. 2009, pp. 3039–3044.
  • A. Abedini and T. Lipo, “A novel topology of solid state transformer,” in Proc. PEDSTC, 2010, pp. 101–105.
  • M. R. Banaei and E. Salary, “Power quality improvement based on novel power electronic transformer,” in Proc. PEDSTC., 2011, pp. 286–291.
  • A. J. Jin, H. T. Li, and S. L. Li, “A new matrix type three-phase fourwire power electronic transformer,” in Proc. 37th IEEEPESC, Jun. 2006, pp. 1–6.
  • K. K. Mohapatra and N. Mohan, “Matrix converter fed open-ended power electronic transformer for power system application,” in Proc. IEEE PES 21st Century, Jul. 2008, pp. 1–6.
  • H. Mirmousa and M. R. Zolghadri, “A novel circuit topology for three-phase four-wire distribution electronic power transformer,” in Proc. 7th Int. Conf. Power Drive Syst., Nov. 2007, pp. 1215–1222.
  • M. Sabahi, A. Y. Goharrizi, S. H. Hosseini, M. B. B. Sharifian, and G. B. Gharehpetian, “Flexible power electronic transformer,” IEEE Trans. Power Electron., vol. 25, no. 8, pp. 2159–2169, Aug. 2010.
  • M. Sabahi, S. H. Hosseini, M. B. Sharifian, A. Y. Goharrizi, and G. B. Gharehpetian, “Zero-voltage switching bi-directional power electronic transformer,” IET. Power Electron., vol. 3, no. 5, pp. 818–828, 2010.
  • P. Drabek, Z. Peroutka, M. Pittermann, and M. Cedl, “New configuration of traction converter with medium frequency transformer using matrix converters,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5041–5048, Nov. 2011.
  • N. Hugo, P. Stefanutti, M. Pellerin, and A. Akdag, “Power electronic traction transformer,” in Proc. EPE, 2007, pp. 1–10.
  • M. Carpita, M. Marchesoni, M. Pellerin, and D. Moser, “Multilevel converter for traction applications: Small-scale prototype test results,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2203–2212, May 2008.
  • M. Glinka and R. Marquardt, “A new AC/AC multilevel converter family,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 662–669, Jun. 2005.
  • Mao, X., Falcones, S., & Ayyanar, R. (2010). Energy-based control design for a solid-state transformer. In Power and Energy Society General Meeting. IEEE (pp. 1-7). IEEE.
  • S. Bifaretti, P. Zanchetta, A. Watson, L. Tarisciotti, and J. C. Clare, “Advanced power electronic conversion and control system for universal and flexible power management,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 231–243, Jun. 2011.
  • T. F. Zhao, L. Y. Yang, J. Wang, and A. Q. Huang, “270 kVA solid state transformer based on 10 kV SiC power devices,” in Proc. IEEE. Electric Ship Tech. Symp., May 2007, pp. 145–149.
  • E. R. Ronan, S. D. Sudhoff, S. F. Glover, and D. L. Galloway, “A power electronic-based distribution transformer,” IEEE Trans. Power Delivery, vol. 17, no. 2, pp. 537–543, Apr. 2002.
  • J. S. Lai, A. Maitra, A. Mansoor, and F.Goodman, “Multilevel intelligent universal transformer for medium voltage application,” in Proc. IEEE Ind. Appl. Conf., Oct. 2005, pp. 1893–1899.
  • G. Y. Wang, S. Baek, J. Elliott, A. Kadavelugu, F. Wang, X. She, S. Dutta, Y. Liu, T. F. Zhao, W. X. Yao, R. Gould, S. Bhattacharya, and A. Q. Huang, “Design and hardware implementation of Gen-I silicon based solid state transformer,” in Proc. IEEE. Appl. Power Electron. Conf., Mar. 2011, pp. 1344–1349.
  • D. Grider, M. Das, A. Agarwal, J. Palmour, S. Leslie, J. Ostop, R. Raju, M. Schutten, and A. Hefner, “10kV/120A SiC DMOSFET half-bridge power modules for 1 MVA solid state power substation,” in Proc. IEEE Electr. Ship Tech. Symp., Apr. 2011, pp. 131–134.
  • Energy Conversation Program for Commercial Equipment, Distribution Transformers Energy Conversation Standards, CFR Standard 431, Oct. 2007.
  • K. Hatua, S. Dutta, A. Tripathi, S. Baek, G. Karimi, and S. Bhattacharya, “Transformerless intelligent power substation design with 15 kV SiC IGBT for grid interconnection,” in Proc. IEEE ECCE, Sep. 2011, pp. 4225–4232.
  • G. Ortiz, M. Leibl, J. W. Kolar, and O. Apeldoorn, “Medium frequency transformer for solid-state-transformer application—Design and experimental verification,” in Proc. IEEE PEDS, Apr. 2013, pp. 1285–1290.
  • H. F. Fan and H. Li, “High frequency transformer isolated bidirectional DC-DC converter modules with high efficiency over wide load range for 20 kVA solid state transformer,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3599–3608, Dec. 2011.
  • G. Brando, A. Dannier, and A. D. Pizzo, “A simple predictive control technique of power electronic transformers with high dynamic features,” in Proc. IEEE PEMD, Jan. 2010, pp. 1–6.
  • T. Komrska and Z. Peroutka, “Main traction converter with mediumfrequency transformer: Control of converters around MF transformer,” in Proc. SPEEDAM., 2008, pp. 1194–1198.
  • M. Stenier and H. Reinold, “Medium frequency topology in railway applications,” in Proc. EPE ECCE Eur., 2007, pp. 1–10.
  • M. Claessens, D. Dujic, J. K. Steinke, P. Stefanutti, and C. Vetterli, “Traction transformation: A power electronic traction transformer (PETT),” ABB Rev., vol. 3, no. 16, pp. 1–3, Jan. 2012.
  • Falcones, S., Mao, X., & Ayyanar, R. (2010, July). Topology comparison for solid state transformer implementation. In Power and Energy Society General Meeting, 2010 IEEE (pp. 1-8).
  • Wang, D., Mao, C., Lu, J., Fan, S., & Chen, L. (2005). The research on characteristics of electronic power transformer for distribution system. In 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific (pp. 1-5). IEEE.
  • Wang, D., Mao, C., Lu, J., Fan, S., & Chen, L. (2005). The research on characteristics of electronic power transformer for distribution system. In 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific (pp. 1-5). IEEE.
  • H. I. Eini and S. Farhangi, “Analysis and design of power electronic transformer for medium voltage levels,” in Proc. 37th IEEE PESC, Jun. 2006, pp. 1–5.
  • Zhao, B., Song, Q., & Liu, W. (2015). A Practical Solution of High-Frequency-Link Bidirectional Solid-State Transformer Based On Advanced Components in Hybrid Microgrid. IEEE Transactions on Industrial Electronics, 62(7), 4587-4597.
  • S. Bifaretti, P. Zanchetta, A. Watson, L. Tarisciotti, and J. C. Clare, “Advanced power electronic conversion and control system for universal and flexible power management,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 231–243, Jun. 2011.
  • S. Bhattacharya, T. Zhao, G. Wang, S. Dutta, S. Baek, Y. Du, B. Parkhideh, X. Zhou, A.Q. Huang, “Design and Development of Generation-I Silicon based Solid State Transformer”, Applied Power Electronics Conference and Exposition, APEC 2010, palm Springs, CA, February 21-25, 2010, pp. 1666-1673
  • Wang, L., Zhang, D., Wang, Y., Wu, B., & Athab, H. S. (2016). Power and voltage balance control of a novel three-phase solid-state transformer using multilevel cascaded H-bridge inverters for microgrid applications. IEEE Transactions on Power Electronics, 31(4), 3289-3301.
  • Kim, J. S., Choe, G. Y., Jung, H. M., Lee, B. K., Cho, Y. J., & Han, K. B. (2010, September). Design and implementation of a high-efficiency on-board battery charger for electric vehicles with frequency control strategy. In 2010 IEEE Vehicle Power and Propulsion Conference (pp. 1-6). IEEE.
  • Liu, C., Gu, B., Lai, J. S., Wang, M., Ji, Y., Cai, G., ... & Sun, P. (2013). High-efficiency hybrid full-bridge–half-bridge converter with shared ZVS lagging leg and dual outputs in series. IEEE Transactions on Power Electronics, 28(2), 849-861.
  • Yilmaz, M., & Krein, P. T. (2013). Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE transactions on Power Electronics, 28(5), 2151-2169.
  • Gu, B., Lai, J. S., Kees, N., & Zheng, C. (2013). Hybrid-switching full-bridge DC–DC converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers. IEEE Transactions on Power Electronics, 28(3), 1132-1144.
  • Khaligh, A., & Dusmez, S. (2012). Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Transactions on Vehicular Technology, 61(8), 3475-3489.
  • Falcones, S., Ayyanar, R., & Mao, X. (2013). A DC–DC multiport-converter-based solid-state transformer integrating distributed generation and storage. IEEE Transactions on Power Electronics, 28(5), 2192-2203.
  • Jung, Y., Yu, G., Choi, J., & Choi, J. (2002, May). High-frequency DC link inverter for grid-connected photovoltaic system. In Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002. (pp. 1410-1413). IEEE.
  • Shi, J., Gou, W., Yuan, H., Zhao, T., & Huang, A. Q. (2011). Research on voltage and power balance control for cascaded modular solid-state transformer. IEEE Transactions on Power Electronics, 26(4), 1154-1166.
  • She, X., Huang, A. Q., & Wang, G. (2011). 3-D space modulation with voltage balancing capability for a cascaded seven-level converter in a solid-state transformer. IEEE Transactions on Power Electronics, 26(12), 3778-3789.
  • Zhao, T., Wang, G., Bhattacharya, S., & Huang, A. Q. (2013). Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer. IEEE Transactions on Power Electronics, 28(4), 1523-1532.
  • Krishnaswami, H. (2011, September). Photovoltaic microinverter using single-stage isolated high-frequency link series resonant topology. In 2011 IEEE Energy Conversion Congress and Exposition (pp. 495-500). IEEE.
  • T. Shimizu, K. Wada, and N. Nakamura, “A flyback type single phase utility interactive inverter with low frequency ripple current reduction on the DC input for an AC photovoltaic module system,” in Proc. IEEE PESC’02, vol. 3, 2002, pp. 1483–1488.
  • S. B. Kjaer and F. Blaabjerg, “Design optimization of a single phase inverter for photovoltaic applications,” in Proc. IEEE PESC’03, vol. 3, 2003, pp. 1183–1190.
  • S. B. Kjaer and F. Blaabjerg, “Design optimization of a single phase inverter for photovoltaic applications,” in Proc. IEEE PESC’03, vol. 3, 2003, pp. 1183–1190.
  • N. P. Papanikolaou, E. C. Tatakis, A. Critsis, and D. Klimis, “Simplified high frequency converter in decentralized grid-connected PV systems: a novel low-cost solution,” in Proc. EPE’03, 2003, CD-ROM.
  • S. B. Kjaer, “Design and control of an inverter for photovoltaic applications,” Ph.D. dissertation, Inst. Energy Technol., Aalborg University, Aalborg East, Denmark, 2004/2005.
  • M. Meinhardt, T. O’Donnell, H. Schneider, J. Flannery, C. O. Mathuna, P. Zacharias, and T. Krieger, “Miniaturised ‘low profile’ module integrated converter for photovoltaic applications with integrated magnetic components,” in Proc. IEEE APEC’99, vol. 1, 1999, pp. 305–311.
  • M. Nagao and K. Harada, “Power flow of photovoltaic system using buck-boost PWM power inverter,” in Proc. PEDS’97, vol. 1, 1997, pp. 144–149.
  • M. Nagao and K. Harada, “Power flow of photovoltaic system using buck-boost PWM power inverter,” in Proc. PEDS’97, vol. 1, 1997, pp. 144–149.
  • S. Mekhilef, N. A. Rahim, and A. M. Omar, “A new solar energy conversion scheme implemented using grid-tied single phase inverter,” in Proc. IEEE TENCON’00, vol. 3, 2000, pp. 524–527.
  • D. C. Martins and R. Demonti, “Grid connected PV system using two energy processing stages,” in Conf. Rec. 29th IEEE Photovoltaic Specialists Conf., 2002, pp. 1649–1652.
  • -, “Photovoltaic energy processing for utility connected system,” in Proc. IEEE IECON’01, vol. 2, 2001, pp. 1292–1296.
  • A. Lohner, T. Meyer, and A. Nagel, “A new panel-integratable inverter concept for grid-connected photovoltaic systems,” in Proc. IEEE ISIE’96, vol. 2, 1996, pp. 827–831.
  • Wang, Z., & Li, H. (2011, March). Integrated MPPT and bidirectional battery charger for PV application using one multiphase interleaved three-port dc-dc converter. In 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 295-300). IEEE.
  • Cacciato, M., Consoli, A., Attanasio, R., & Gennaro, F. (2010). Soft-switching converter with HF transformer for grid-connected photovoltaic systems. IEEE Transactions on Industrial Electronics, 57(5), 1678-1686.
  • M. Meinhardt, T. O’Donnell, H. Schneider, J. Flannery, C.O. Mathuna, P. Zacharias, T. Krieger, Miniaturised “Low Profile” module integrated converter for photovoltaic applications with integrated magnetic components, IEEE proc. Of the 14th annual applied power electronics conference and exposition (APEC’99), vol. 1, pp. 305-311, 1999.
  • A. Lohner, T. Meyer, A. Nagel, A new panel-integratable inverter concept for grid-connected photovoltaic systems, IEEE proc. of the 1996 international symposium on industrial electronics (ISIE’96), vol. 2, pp. 827-831, 1996.
  • C. Prapanavarat, M. Barnes, N. Jenkins, Investigation of the performance of a photovoltaic AC module, IEE proc. of generation, transmission and distribution, vol. 149, no. 4, pp. 472-478, July 2002.
  • S.W.H. de Haan, H. Oldenkamp, E.J. Wildenbeest, Test results of a 130 W AC module; a modular solar AC power station, IEEE proc. of the 24th photovoltaic specialists conference, vol. 1, pp. 925-928, 1994.
  • S.W.H. de Haan, H. Oldenkamp, C.F.A Frumau, W. Bonin, Development of a 100 W resonant inverter for ac-modules, Proc. of the 12th European photovoltaic solar energy conference, 1994.
  • C. Dorofte, “Comparative analysis of four dc/dc converters for photovoltaic grid interconnection,” Aalborg niv./Powerlynx A/S, Aalborg East, Denmark, Tech. Rep., 2001.
  • R. Teodorescu, F. Blaabjerg, U. Borup, and M. Liserre, “A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation,” in Proc. IEEE APEC’04, vol. 1, 2004, pp. 580–586.
  • R. Teodorescu, F. Blaabjerg, U. Borup, and M. Liserre, “A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation,” in Proc. IEEE APEC’04, vol. 1, 2004, pp. 580–586.
  • L. Asiminoaei, R. Teodorescu, F. Blaabjerg, and U. Borup, “A new method of on-line grid impedance estimation for PV inverter,” in Proc. IEEE APEC’04, vol. 3, 2004, pp. 1527–1533.
  • L. Asiminoaei, R. Teodorescu, F. Blaabjerg, and U. Borup, “A new method of on-line grid impedance estimation for PV inverter,” in Proc. IEEE APEC’04, vol. 3, 2004, pp. 1527–1533.
  • A. V. Timbus, R. Teodorescu, F. Blaabjerg, and U. Borup, “Online grid measurement and ENS detection for PV inverter running on highly inductive grid,” IEEE Power Electron. Lett., vol. 2, no. 3, pp. 77–82, Sep. 2004.
  • A. V. Timbus, R. Teodorescu, F. Blaabjerg, and U. Borup, “Online grid measurement and ENS detection for PV inverter running on highly inductive grid,” IEEE Power Electron. Lett., vol. 2, no. 3, pp. 77–82, Sep. 2004.
  • C. Dorofte, “Comparative analysis of four dc/dc converters for photovoltaic grid interconnection,” Aalborg Univ./Powerlynx A/S, Aalborg East, Denmark, Tech. Rep., 2001.
  • -, “Design of a dc/dc converter for photovoltaic grid interconnection,” Aalborg Univ./Powerlynx A/S, Aalborg East, Denmark, Tech. Rep., 2001.
  • Liu, T., Yang, X., Chen, W., Li, Y., Xuan, Y., Huang, L., & Hao, X. (2018). Design and implementation of high efficiency control scheme of dual active bridge based 10kV/1MW solid state transformer for PV application. IEEE Transactions on Power Electronics.
  • Rubino, L., Guida, B., Liccardo, F., Marino, P., & Cavallo, A. (2010, July). Buck-boost DC/DC converter for aeronautical applications. In 2010 IEEE International Symposium on Industrial Electronics (pp. 2690-2695). IEEE.
  • Kim, E. H., & Kwon, B. H. (2009). High step-up resonant push–pull converter with high efficiency. IET Power Electronics, 2(1), 79-89.
  • Delshad, M., & Farzanehfard, H. (2011). High step-up zero-voltage switching current-fed isolated pulse width modulation DC–DC converter. IET power electronics, 4(3), 316-322.
  • A. Itoher, T. Meyer, and A. Nagel, “A new panel-integratable inverter concept for grid-connected photovoltaic systems”, Int. Symp. on Indust. Electronics (ISIE) IEEE 1, 827–831 (1996).
  • Q. Li and P. Wolfs, “An analysis of a resonant half bridge dual converter operating in continuous and discontinuous modes”, 33rd Annual Power Electronics Specialists Conf. (PESC) IEEE 1, 1313–1318 (2002).
  • D. Li, B. Liu, B. Yuan, X. Yang, J. Duan, and J. Zhai, “A high step-up current fed multi-resonant converter with output voltage doubler”, 26th Applied Power Electronics Conf. and Exposition (APEC) IEEE 1, CD-ROM (2011).
  • Yuan, B., Yang, X., & Li, D. (2010, September). A high efficiency current fed multi-resonant converter for high step-up power conversion in renewable energy harvesting. In 2010 IEEE Energy Conversion Congress and Exposition (pp. 2637-2641). IEEE.
  • Choi, W. Y., Song, S. G., Park, S. J., Kim, K. H., & Lim, Y. C. (2009, October). Photovoltaic module integrated converter system minimizing input ripple current for inverter load. In INTELEC 2009-31st International Telecommunications Energy Conference (pp. 1-4). IEEE.
  • Fan, H., & Li, H. (2011). High-frequency transformer isolated bidirectional DC–DC converter modules with high efficiency over wide load range for 20 kVA solid-state transformer. IEEE Transactions on Power Electronics, 26(12), 3599-3608.
  • Emanet, H. (2001). Yüksek Frekanslı Manyetik Malzemelerde Deri Ve Yaklaşım Etkisi Sonucu Oluşan İletken Kayıplarının Hesaplanması (Doctoral dissertation, Fen Bilimleri Enstitüsü).
  • Sclocchi, M. Switching Power Supply Design: LM5030 Push-Pull Converter.
  • Aydemir, T., Koparan, A., & Şimşek, O. 200 Amper, Yüksek Frekans Anahtarlamalı DA Kaynak Makinesinin Tasarımı ve Gerçeklestirilmesi/Design and Implementation of a 200 Ampere High Frequency Switching DC Welding Machine. EMO BİLİMSEL DERGİ, 2(3), 51-61.
Toplam 107 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Oguz Alkul 0000-0001-6422-9267

Şevki Demirbaş 0000-0001-9111-684X

Yayımlanma Tarihi 11 Haziran 2019
Gönderilme Tarihi 24 Nisan 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 2

Kaynak Göster

APA Alkul, O., & Demirbaş, Ş. (2019). Güç Elektroniği Transformatörlerinin İncelenmesi ve Bir DA/DA Dönüştürücü Uygulaması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 7(2), 450-471. https://doi.org/10.29109/gujsc.556509

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526