Araştırma Makalesi
BibTex RIS Kaynak Göster

Uzun-Kısa Süreli Bellek Ağı Kullanarak Global Güneş Işınımı Zaman Serileri Tahmini

Yıl 2019, Cilt: 7 Sayı: 4, 882 - 892, 24.12.2019
https://doi.org/10.29109/gujsc.571831

Öz

Global güneş ışınımı tahmini,
güneş enerjisi sistemlerinin etkin yönetimi ve işletilmesinin yanı sıra
gelecekteki enerji üretimi hakkında güvenilir bilgi sağlamak için giderek daha
fazla önem kazanmaktadır. Bu çalışmada, günlük güneş ışınım tahmin problemini
etkin bir model oluşturmak için Uzun Kısa Süreli Bellek (LSTM) ağı
önerilmiştir. Önerilen yöntemin etkinliği Karar Ağaçları Regresyon, Rastgele
Orman Regresyon, Gradyan Güçlendirme ve K-En Yakın Komşu gibi en etkili makine
öğrenme algoritmalar ile karşılaştırılmıştır. LSTM modelinin yaklaşımının
etkinliğini doğrulamak için Çorum - Türkiye’de Temmuz-1983 ve Aralık-2018
tarihleri arasında global güneş ışınımı sıralı zaman serileri verileri
kullanılmıştır. Simülasyon sonuçları, LSTM yönteminin diğer makine öğrenme
modellerinden daha iyi performansa sahip olduğunu göstermektedir.

Kaynakça

  • [1] M. Öztürk, N. Özek, B. Berkama, Isparta için aylık ortalama günlük global güneş radyasyonu tahmininde mevcut olan bazı modellerin karşılaştırılması, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 18 (2012) 13-27.
  • [2] H.O. Mengeş, M.H. Sonmete, Konya’da Aylık Ortalama Toplam Güneş Işınımının Tahmini için Mevcut Bazı Modellerin Karşılaştırılması, Tarım Makinaları Bilimi Dergisi, 1 (2005) 237-244.
  • [3] C. Wen, S. Liu, X. Yao, L. Peng, X. Li, Y. Hu, T. Chi, A novel spatiotemporal convolutional long short-term neural network for air pollution prediction, Science of The Total Environment, 654 (2019) 1091-1099.
  • [4] A. Sagheer, M. Kotb, Time series forecasting of petroleum production using deep LSTM recurrent networks, Neurocomputing, 323 (2019) 203-213.
  • [5] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation, 9 (1997) 1735-1780.
  • [6] S. Aggarwal, L. Saini, Solar energy prediction using linear and non-linear regularization models: A study on AMS (American Meteorological Society) 2013–14 Solar Energy Prediction Contest, Energy, 78 (2014) 247-256.
  • [7] A. Mellit, A.M. Pavan, A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy, Solar Energy, 84 (2010) 807-821.
  • [8] M. Lave, J. Kleissl, J.S. Stein, A wavelet-based variability model (WVM) for solar PV power plants, IEEE Transactions on Sustainable Energy, 4 (2012) 501-509.
  • [9] S. Salcedo-Sanz, C. Casanova-Mateo, A. Pastor-Sánchez, M. Sánchez-Girón, Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization–Extreme Learning Machine approach, Solar Energy, 105 (2014) 91-98.
  • [10] A.K. Yadav, H. Malik, S. Chandel, Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models, Renewable and Sustainable Energy Reviews, 31 (2014) 509-519.
  • [11] H.T. Pedro, C.F. Coimbra, M. David, P. Lauret, Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts, Renewable Energy, 123 (2018) 191-203.
  • [12] G. Arslan, B. Bayhan, K. Yaman, Mersin/Türkiye için Ölçülen Global Güneş Işınımının Yapay Sinir Ağları ile Tahmin Edilmesi ve Yaygın Işınım Modelleri ile Karşılaştırılması, in: Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 2019, pp. 80-96.
  • [13] Á. Fernández, Y. Gala, J.R. Dorronsoro, Machine learning prediction of large area photovoltaic energy production, in: International Workshop on Data Analytics for Renewable Energy Integration, Springer, 2014, pp. 38-53.
  • [14] Y. Gala, Á. Fernández, J. Díaz, J.R. Dorronsoro, Hybrid machine learning forecasting of solar radiation values, Neurocomputing, 176 (2016) 48-59.
  • [15] S. Bouktif, A. Fiaz, A. Ouni, M. Serhani, Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches, Energies, 11 (2018) 1636.
  • [16] H. Gunduz, Y. Yaslan, Z. Cataltepe, Intraday prediction of Borsa Istanbul using convolutional neural networks and feature correlations, Knowledge-Based Systems, 137 (2017) 138-148.
  • [17] T. Fischer, C. Krauss, Deep learning with long short-term memory networks for financial market predictions, European Journal of Operational Research, 270 (2018) 654-669.
  • [18] K. Kim, D.-K. Kim, J. Noh, M. Kim, Stable Forecasting of Environmental Time Series via Long Short Term Memory Recurrent Neural Network, IEEE Access, 6 (2018) 75216-75228.
  • [19] X. Qing, Y. Niu, Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM, Energy, 148 (2018) 461-468.
  • [20] A. Alzahrani, P. Shamsi, C. Dagli, M. Ferdowsi, Solar irradiance forecasting using deep neural networks, Procedia Computer Science, 114 (2017) 304-313.
  • [21] R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent neural networks, in: International conference on machine learning, 2013, pp. 1310-1318.
  • [22] Y. Xiao, Y. Yin, Hybrid LSTM Neural Network for Short-Term Traffic Flow Prediction, Information, 10 (2019) 105.
  • [23] D. Ayata, M. Saraçlar, A. Özgür, Political opinion/sentiment prediction via long short term memory recurrent neural networks on Twitter, in: 2017 25th Signal Processing and Communications Applications Conference (SIU), IEEE, 2017, pp. 1-4.
  • [24] A. Liaw, M. Wiener, Classification and regression by randomForest, R news, 2 (2002) 18-22.
  • [25] T. Hastie, R. Tibshirani, Discriminant adaptive nearest neighbor classification and regression, in: Advances in Neural Information Processing Systems, 1996, pp. 409-415.
  • [26] J.H. Friedman, Stochastic gradient boosting, Computational statistics & data analysis, 38 (2002) 367-378.
  • [27] O. Gunaydin, A. Ozbeyaz, M. Soylemez, Estimating California Bearing Ratio Using Decision Tree Regression Analysis Using Soil Index and Compaction Parameters, International Journal of Intelligent Systems and Applications in Engineering, 7 (2019) 30-33.
  • [28] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980, (2014).
  • [29] F. Chollet, Keras, GitHub repository, https://github.com/fchollet/keras., (2015).
  • [30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, Scikit-learn: Machine learning in Python, Journal of machine learning research, 12 (2011) 2825-2830.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Ahmet Kara 0000-0002-1590-0023

Yayımlanma Tarihi 24 Aralık 2019
Gönderilme Tarihi 30 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 4

Kaynak Göster

APA Kara, A. (2019). Uzun-Kısa Süreli Bellek Ağı Kullanarak Global Güneş Işınımı Zaman Serileri Tahmini. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 7(4), 882-892. https://doi.org/10.29109/gujsc.571831

Cited By
















                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526