Araştırma Makalesi
BibTex RIS Kaynak Göster

P3HT:PCBM Fotoaktif Tabanlı Tersine Çevrilmiş Polimer Güneş Hücrelerinin Üretimi ve Karakterizasyonu

Yıl 2019, Cilt: 7 Sayı: 4, 916 - 926, 24.12.2019
https://doi.org/10.29109/gujsc.621144

Öz

Bu çalışmada, SnO2, TiO2
ve ZnO şeffaf metal oksit ince filmler kullanılarak tersine çevrilmiş güneş
hücreleri üretildi. Cam/flor katkılı kalay oksit (Glass/FTO) alttaşlar ve P3HT:PCBM
polimer foto-aktif katmanı kullanılarak
Cam/FTO/SnO2/Polimer/MoO3/Ag,
Cam/FTO/TiO2/Polimer/MoO3/Ag ve  Cam/FTO/ZnO/Polimer/MoO3/Ag güneş
hücresi yapıları üretildi.
Şeffaf metal oksitler püskürtme yöntemi, polimer
tabası ise dönel kaplama yöntemi kullanılarak kaplandı. Kaplama sonrası SnO2,
TiO2, ZnO ve  P3HT:PCBM  polimer katmanlarının yüzey morfolojileri Atomik
Kuvvet Mikroskopu (AFM) yardımı ile analiz edildi. Ayrıca, polimer katmanının
kaplama sonrasında zamana göre kuruma süreci görüntülendi. Üretilen tersine
çevrilmiş güneş hücrelerinde elektron taşıma tabakası olarak görev yapan şeffaf
metal oksitlerin güneş hücrelerinin fotovoltaik performansına etkileri AM 1.5 Güneş
altına incelendi ve püskürtme yöntemi ile kaplanan SnO2, TiO2
ve ZnO tabakalarına sahip hücrelerin güç dönüşüm verimlilikleri sırayla %1.62,
%2.78 ve %3.32 olarak ölçüldü. 

Destekleyen Kurum

Cumhurbaşkanlığı Strateji ve Bütçe Başkanlığı (Türkiye)

Proje Numarası

2016K121220

Kaynakça

  • [1] A. Pochettino, Sul comportamento foto-elettrico dell’antracene, Acad. Lincei Rendus. 15 (1906) 355–363.
  • [2] J. Koenigsberger, K. Schilling, Über Elektrizitätsleitung in festen Elementen und Verbindungen. I. Minima des Widerstandes, Prüfung auf Elektronenleitung, Anwendung der Dissoziationsformeln, Ann. Phys. 337 (1910) 179–230. doi:10.1002/andp.19103370608.
  • [3] M. Volmer, Die verschiedenen lichtelektrischen Erscheinungen am Anthracen, ihre Beziehungen zueinander, zur Fluoreszenz und Dianthracenbildung, Ann. Phys. 345 (1913) 775–796. doi:10.1002/andp.19133450411.
  • [4] H. Akamatu, H. Inokuchi, Y. Matsunaga, Electrical Conductivity of the Perylene-Bromine Complex, Nature. 173 (1954) 168–169.
  • [5] C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Electrical Conductivity in Doped Polyacetylene., Phys. Rev. Lett. 40 (1978) 1472–1472. doi:10.1103/PhysRevLett.40.1472.
  • [6] C.W. Tang, Two‐layer organic photovoltaic cell, Appl. Phys. Lett. 48 (1986) 183–185. doi:10.1063/1.96937.
  • [7] C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes, Appl. Phys. Lett. 51 (1987) 913–915. doi:10.1063/1.98799.
  • [8] H. Kallmann, M. Pope, Photovoltaic Effect in Organic Crystals, J. Chem. Phys. 30 (1959) 585–586. doi:10.1063/1.1729992.
  • [9] G.A. Chamberlain, Organic solar cells: A review, Sol. Cells. 8 (1983) 47–83. doi:10.1016/0379-6787(83)90039-X.
  • [10] NREL, Best Research - Efficiency Chart https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf Access date: 08.23.2019.
  • [11] W. Brütting, Physics of organic semiconductors, Wiley-VCH, 2005.
  • [12] A.M. Bagher, Introduction to Organic Solar Cells, Sustain. Energy. 2 (2014) 85–90.
  • [13] S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells., Chem. Rev. 107 (2007) 1324–38. doi:10.1021/cr050149z.
  • [14] A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, E. Harth, A. Gügel, K. Müllen, Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures, Phys. Rev. B. 59 (1999) 15346–15351. doi:10.1103/PhysRevB.59.15346.
  • [15] J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, A.B. Holmes, Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell, Appl. Phys. Lett. 68 (1996) 3120. doi:10.1063/1.115797.
  • [16] C.W. Tang, S. a. Vanslyke, C.H. Chen, Electroluminescence of doped organic thin films, J. Appl. Phys. 65 (1989) 3610–3616. doi:10.1063/1.343409.
  • [17] C. Richter, D. Lincot, C.A. Gueymard, eds., Solar Energy, Springer, New York, 2012. doi:10.1007/978-1-4614-5806-7.
  • [18] G. Yu, J. Gao, J.C. Hummelen, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science. 270 (1995) 1789–1791. doi:10.1126/science.270.5243.1789.
  • [19] Z. Lin, J. Wang, eds., Low-cost Nanomaterials, Springer, Verlag-London, 2014.
  • [20] M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Sol. Energy Mater. Sol. Cells. 92 (2008) 686–714. doi:10.1016/j.solmat.2008.01.005.
  • [21] T. Shirakawa, T. Umeda, Y. Hashimoto, A. Fujii, K. Yoshino, Effect of ZnO layer on characteristics of conducting polymer/C 60 photovoltaic cell, J. Phys. D. Appl. Phys. 37 (2004) 847–850. doi:10.1088/0022-3727/37/6/007.
  • [22] Y. Zhou, H. Cheun, W.J. Potscavage, Jr, C. Fuentes-Hernandez, S.-J. Kim, B. Kippelen, Inverted organic solar cells with ITO electrodes modified with an ultrathin Al2O3 buffer layer deposited by atomic layer deposition, J. Mater. Chem. 20 (2010) 6189. doi:10.1039/c0jm00662a.
  • [23] V.-H. Tran, R. Khan, I.-H. Lee, S.-H. Lee, Low-temperature solution-processed ionic liquid modified SnO2 as an excellent electron transport layer for inverted organic solar cells, Sol. Energy Mater. Sol. Cells. 179 (2018) 260–269. doi:10.1016/j.solmat.2017.12.013.
  • [24] D. Yang, P. Fu, F. Zhang, N. Wang, J. Zhang, C. Li, High efficiency inverted polymer solar cells with room-temperature titanium oxide/polyethylenimine films as electron transport layers, J. Mater. Chem. A. 2 (2014) 17281–17285. doi:10.1039/C4TA03838J.
  • [25] H. Cheun, C. Fuentes-Hernandez, J. Shim, Y. Fang, Y. Cai, H. Li, A.K. Sigdel, J. Meyer, J. Maibach, A. Dindar, Y. Zhou, J.J. Berry, J.-L. Bredas, A. Kahn, K.H. Sandhage, B. Kippelen, Oriented Growth of Al2O3:ZnO Nanolaminates for Use as Electron-Selective Electrodes in Inverted Polymer Solar Cells, Adv. Funct. Mater. 22 (2012) 1531–1538. doi:10.1002/adfm.201102968.
  • [26] H.-M. Lee, Y.-J. Noh, S.-I. Na, K.-B. Chung, H.-K. Kim, PEDOT:PSS-free organic solar cells fabricated on buffer and anode integrated Ta-doped In2O3 films, Sol. Energy Mater. Sol. Cells. 125 (2014) 145–154. doi:10.1016/J.SOLMAT.2014.02.036.
  • [27] S. Temel, M. Nebi, D. Peker, Sol- Gel Döndürerek Kaplama Tekniği ile Saydam İletken ZnO İnce Filmlerin Üretilmesi ve Karakterizasyonu, GU J Sci, Part C. 5 (2017) 51–59.
  • [28] I.D. Parker, Carrier tunneling and device characteristics in polymer light‐emitting diodes, J. Appl. Phys. 75 (1994) 1656–1666. doi:10.1063/1.356350.
  • [29] M.G. Helander, M. Greiner, W.M. Tang, M.G. Helander, M.T. Greiner, Z.B. Wang, Z.H. Lu, Work function of fluorine doped tin oxide, Artic. J. Vac. Sci. Technol. A Vac. Surfaces Film. (2011). doi:10.1116/1.3525641.
  • [30] M. Al-ibrahim, S. Sensfuss, J. Uziel, Comparison of normal and inverse poly ( 3- hexylthiophene )/ fullerene solar cell architectures, Sol. Energy Mater. Sol. Cells. 85 (2005) 277–283. doi:10.1016/j.solmat.2004.08.001.
  • [31] D. Fichou, Handbook of Oligo- and Polythiophene, Wiley, New York, 1999.
  • [32] J. Li, F. Dierschke, J. Wu, A.C. Grimsdale, K. Müllen, Poly(2,7-carbazole) and perylene tetracarboxydiimide: a promising donor/acceptor pair for polymer solar cells, J. Mater. Chem. 16 (2006) 96–100. doi:10.1039/B512373A.
  • [33] R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, B. de Boer, Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years), Polym. Rev. 48 (2008) 531–582. doi:10.1080/15583720802231833.

Production and Characterization of P3HT:PCBM Photoactive Layer Based Inverted Polymer Solar Cells

Yıl 2019, Cilt: 7 Sayı: 4, 916 - 926, 24.12.2019
https://doi.org/10.29109/gujsc.621144

Öz

In this study,
inverted polimer solar cells were produced by using transparent metal oxides of
SnO2, TiO2 ve ZnO thin films. The solar cell structures
of Glass/FTO/SnO2/Polymer/MoO3/Ag, Glass/FTO/TiO2/Polymer/MoO3/Ag
and Glass/FTO/ZnO/Polymer/MoO3/Ag were produced by using Glass/fluorine
doped tin oxide (Glass/FTO) substrates and P3HT:PCBM polymer photoactive layer.
A sputterring system was used to coat the transparent metal oxides and a spin
coating system was used to deposit polymer layer.  The surface morphologies of 
SnO2,
TiO2, ZnO and
P3HT:PCBM polymer
layers analyzed by Atomic Force Microscope (AFM). Moreover, the drying process
of the polymer layer over time after coating was pictured. The effects of
transparent metal oxides as electron transport layer on photovoltaic
performance of produced inverted polimer solar cells under AM 1.5 solar
illumination was examined and the power conversion efficiencies (PCE) of cells
wıth SnO2, TiO2 and ZnO layers were measured as 1.62%,
2.78% and 3.32%, respectively. 

Proje Numarası

2016K121220

Kaynakça

  • [1] A. Pochettino, Sul comportamento foto-elettrico dell’antracene, Acad. Lincei Rendus. 15 (1906) 355–363.
  • [2] J. Koenigsberger, K. Schilling, Über Elektrizitätsleitung in festen Elementen und Verbindungen. I. Minima des Widerstandes, Prüfung auf Elektronenleitung, Anwendung der Dissoziationsformeln, Ann. Phys. 337 (1910) 179–230. doi:10.1002/andp.19103370608.
  • [3] M. Volmer, Die verschiedenen lichtelektrischen Erscheinungen am Anthracen, ihre Beziehungen zueinander, zur Fluoreszenz und Dianthracenbildung, Ann. Phys. 345 (1913) 775–796. doi:10.1002/andp.19133450411.
  • [4] H. Akamatu, H. Inokuchi, Y. Matsunaga, Electrical Conductivity of the Perylene-Bromine Complex, Nature. 173 (1954) 168–169.
  • [5] C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Electrical Conductivity in Doped Polyacetylene., Phys. Rev. Lett. 40 (1978) 1472–1472. doi:10.1103/PhysRevLett.40.1472.
  • [6] C.W. Tang, Two‐layer organic photovoltaic cell, Appl. Phys. Lett. 48 (1986) 183–185. doi:10.1063/1.96937.
  • [7] C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes, Appl. Phys. Lett. 51 (1987) 913–915. doi:10.1063/1.98799.
  • [8] H. Kallmann, M. Pope, Photovoltaic Effect in Organic Crystals, J. Chem. Phys. 30 (1959) 585–586. doi:10.1063/1.1729992.
  • [9] G.A. Chamberlain, Organic solar cells: A review, Sol. Cells. 8 (1983) 47–83. doi:10.1016/0379-6787(83)90039-X.
  • [10] NREL, Best Research - Efficiency Chart https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf Access date: 08.23.2019.
  • [11] W. Brütting, Physics of organic semiconductors, Wiley-VCH, 2005.
  • [12] A.M. Bagher, Introduction to Organic Solar Cells, Sustain. Energy. 2 (2014) 85–90.
  • [13] S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells., Chem. Rev. 107 (2007) 1324–38. doi:10.1021/cr050149z.
  • [14] A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, E. Harth, A. Gügel, K. Müllen, Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures, Phys. Rev. B. 59 (1999) 15346–15351. doi:10.1103/PhysRevB.59.15346.
  • [15] J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, A.B. Holmes, Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell, Appl. Phys. Lett. 68 (1996) 3120. doi:10.1063/1.115797.
  • [16] C.W. Tang, S. a. Vanslyke, C.H. Chen, Electroluminescence of doped organic thin films, J. Appl. Phys. 65 (1989) 3610–3616. doi:10.1063/1.343409.
  • [17] C. Richter, D. Lincot, C.A. Gueymard, eds., Solar Energy, Springer, New York, 2012. doi:10.1007/978-1-4614-5806-7.
  • [18] G. Yu, J. Gao, J.C. Hummelen, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science. 270 (1995) 1789–1791. doi:10.1126/science.270.5243.1789.
  • [19] Z. Lin, J. Wang, eds., Low-cost Nanomaterials, Springer, Verlag-London, 2014.
  • [20] M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Sol. Energy Mater. Sol. Cells. 92 (2008) 686–714. doi:10.1016/j.solmat.2008.01.005.
  • [21] T. Shirakawa, T. Umeda, Y. Hashimoto, A. Fujii, K. Yoshino, Effect of ZnO layer on characteristics of conducting polymer/C 60 photovoltaic cell, J. Phys. D. Appl. Phys. 37 (2004) 847–850. doi:10.1088/0022-3727/37/6/007.
  • [22] Y. Zhou, H. Cheun, W.J. Potscavage, Jr, C. Fuentes-Hernandez, S.-J. Kim, B. Kippelen, Inverted organic solar cells with ITO electrodes modified with an ultrathin Al2O3 buffer layer deposited by atomic layer deposition, J. Mater. Chem. 20 (2010) 6189. doi:10.1039/c0jm00662a.
  • [23] V.-H. Tran, R. Khan, I.-H. Lee, S.-H. Lee, Low-temperature solution-processed ionic liquid modified SnO2 as an excellent electron transport layer for inverted organic solar cells, Sol. Energy Mater. Sol. Cells. 179 (2018) 260–269. doi:10.1016/j.solmat.2017.12.013.
  • [24] D. Yang, P. Fu, F. Zhang, N. Wang, J. Zhang, C. Li, High efficiency inverted polymer solar cells with room-temperature titanium oxide/polyethylenimine films as electron transport layers, J. Mater. Chem. A. 2 (2014) 17281–17285. doi:10.1039/C4TA03838J.
  • [25] H. Cheun, C. Fuentes-Hernandez, J. Shim, Y. Fang, Y. Cai, H. Li, A.K. Sigdel, J. Meyer, J. Maibach, A. Dindar, Y. Zhou, J.J. Berry, J.-L. Bredas, A. Kahn, K.H. Sandhage, B. Kippelen, Oriented Growth of Al2O3:ZnO Nanolaminates for Use as Electron-Selective Electrodes in Inverted Polymer Solar Cells, Adv. Funct. Mater. 22 (2012) 1531–1538. doi:10.1002/adfm.201102968.
  • [26] H.-M. Lee, Y.-J. Noh, S.-I. Na, K.-B. Chung, H.-K. Kim, PEDOT:PSS-free organic solar cells fabricated on buffer and anode integrated Ta-doped In2O3 films, Sol. Energy Mater. Sol. Cells. 125 (2014) 145–154. doi:10.1016/J.SOLMAT.2014.02.036.
  • [27] S. Temel, M. Nebi, D. Peker, Sol- Gel Döndürerek Kaplama Tekniği ile Saydam İletken ZnO İnce Filmlerin Üretilmesi ve Karakterizasyonu, GU J Sci, Part C. 5 (2017) 51–59.
  • [28] I.D. Parker, Carrier tunneling and device characteristics in polymer light‐emitting diodes, J. Appl. Phys. 75 (1994) 1656–1666. doi:10.1063/1.356350.
  • [29] M.G. Helander, M. Greiner, W.M. Tang, M.G. Helander, M.T. Greiner, Z.B. Wang, Z.H. Lu, Work function of fluorine doped tin oxide, Artic. J. Vac. Sci. Technol. A Vac. Surfaces Film. (2011). doi:10.1116/1.3525641.
  • [30] M. Al-ibrahim, S. Sensfuss, J. Uziel, Comparison of normal and inverse poly ( 3- hexylthiophene )/ fullerene solar cell architectures, Sol. Energy Mater. Sol. Cells. 85 (2005) 277–283. doi:10.1016/j.solmat.2004.08.001.
  • [31] D. Fichou, Handbook of Oligo- and Polythiophene, Wiley, New York, 1999.
  • [32] J. Li, F. Dierschke, J. Wu, A.C. Grimsdale, K. Müllen, Poly(2,7-carbazole) and perylene tetracarboxydiimide: a promising donor/acceptor pair for polymer solar cells, J. Mater. Chem. 16 (2006) 96–100. doi:10.1039/B512373A.
  • [33] R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, B. de Boer, Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years), Polym. Rev. 48 (2008) 531–582. doi:10.1080/15583720802231833.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Tasarım ve Teknoloji
Yazarlar

İdris Candan 0000-0002-9950-713X

Yunus Özen 0000-0002-3101-7644

Proje Numarası 2016K121220
Yayımlanma Tarihi 24 Aralık 2019
Gönderilme Tarihi 17 Eylül 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 4

Kaynak Göster

APA Candan, İ., & Özen, Y. (2019). P3HT:PCBM Fotoaktif Tabanlı Tersine Çevrilmiş Polimer Güneş Hücrelerinin Üretimi ve Karakterizasyonu. Gazi University Journal of Science Part C: Design and Technology, 7(4), 916-926. https://doi.org/10.29109/gujsc.621144

                                     16168      16167     16166     21432        logo.png


    e-ISSN:2147-9526