Araştırma Makalesi
BibTex RIS Kaynak Göster

Çorum İlinin Hayvansal Atıklardan Üretilebilir Biyogaz Potansiyelinin İncelenmesi

Yıl 2021, Cilt: 9 Sayı: 2, 246 - 261, 27.06.2021
https://doi.org/10.29109/gujsc.889846

Öz

Yaşamın en temel gerekliliklerinden biri olan enerjinin elde edilmesi, verimli kullanılması günümüzde büyük önem arz etmektedir. Teknolojinin gelişmesi ve dünya nüfusundaki artış ile enerjiye olan ihtiyaç artmış durumdadır. Genel olarak dünyada enerji üretimi fosil kaynaklı yakıtlar ile yapılmaktadır. Fosil kaynaklı yakıtların zamanla tükenecek olması ve çevreye olan zararlarından dolayı insanlar farklı kaynakların arayışına girmişlerdir. Yenilenebilir enerji kaynaklarından birisi olan biyogaz enerjisi araştırmacıların oldukça dikkatini çekmektedir. Bu çalışmada Çorum İli ve ilçelerine ait hayvansal atıklardan elde edilebilecek biyogaz potansiyeli incelenmiştir. İl ve ilçeler bazında üretilebilecek biyogaz miktarı tespit edilmiştir. Çalışmada büyükbaş (sığır, manda), küçükbaş (keçi, koyun) ve kanatlı (tavuk, kaz, ördek) hayvanların atıklarından üretilebilecek biyogaz miktarı hesaplanmıştır. Üretilebilecek biyogazın ısıl değeri ve üretilebilecek elektrik miktarı da bu çalışma kapsamında incelenmiştir. Üretilebilecek biyogaz miktarına bağlı olarak toplam üretilebilecek elektrik miktarı ise büyükbaş hayvanlar için yıllık 80748.8 MWh, küçükbaş hayvan için yıllık 3506.7 MWh ve kanatlı hayvanlar için yıllık 16064.4 MWh olarak bulunmuştur. Toplamda Çorum ili için üretilebilecek elektrik miktarı yıllık 100319.9 MWh olarak tespit edilmiştir. Üretilebilecek olan biyogaz miktarından elektrik üretilmesi durumunda 2608.06 ton CO2 emisyonu ortaya çıkacağı tespit edilmiştir. Aynı elektrik miktarının farklı kaynaklardan elde edilmesi durumu incelendiğinde, elektriğin doğalgazdan elde edilmesi durumunda yaklaşık 20 kat, ithal kömür ile elde edilmesi durumunda ise yaklaşık 34 kat daha fazla karbon salınımı ortaya çıkacağı belirlenmiştir.

Kaynakça

  • [1] Cheah WY, Ling TC, Show PL, Juan JC, Chang JS, Lee DJ. Cultivation in wastewaters for energy: A microalgae platform. Appl Energy 2016;179:609–25. doi:10.1016/j.apenergy.2016.07.015.
  • [2] Kligerman DC, Bouwer EJ. Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review. Renew Sustain Energy Rev 2015;52:1834–46. doi:10.1016/j.rser.2015.08.030.
  • [3] Seyitoglu SS, Dincer I, Kilicarslan A. Energy and exergy analyses of hydrogen production by coal gasification. Int J Hydrogen Energy 2017;42:2592–600. doi:10.1016/j.ijhydene.2016.08.228.
  • [4] Seyitoglu SS, Dincer I, Kilicarslan A. Assessment of an IGCC based trigeneration system for power, hydrogen and synthesis fuel production. Int J Hydrogen Energy 2016;41:8168–75. doi:10.1016/j.ijhydene.2015.10.093.
  • [5] Lam MK, Lee KT. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnol Adv 2012;30:673–90. doi:10.1016/j.biotechadv.2011.11.008.
  • [6] Rawat I, Ranjith Kumar R, Mutanda T, Bux F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 2011;88:3411–24. doi:10.1016/j.apenergy.2010.11.025.
  • [7] Kadam R, Panwar NL. Recent advancement in biogas enrichment and its applications. Renew Sustain Energy Rev 2017;73:892–903. doi:10.1016/j.rser.2017.01.167.
  • [8] Pizzuti L, Martins CA, Lacava PT. Laminar burning velocity and flammability limits in biogas: A literature review. Renew Sustain Energy Rev 2016;62:856–65. doi:10.1016/j.rser.2016.05.011.
  • [9] Çanka Kılıç F. Biyogaz, Önemi̇, Genel Durumu ve Türki̇ye’deki̇ Yeri̇. Mühendis ve Makina 2011;52:94–106.
  • [10] Abdeshahian P, Lim JS, Ho WS, Hashim H, Lee CT. Potential of biogas production from farm animal waste in Malaysia. Renew Sustain Energy Rev 2016;60:714–23. doi:10.1016/j.rser.2016.01.117.
  • [11] Kaygusuz K, Türker MF. Biomass energy potential in Turkey. Renew Energy 2002;26:661–78. doi:10.1016/S0960-1481(01)00154-9.
  • [12] Ergür HS. Cost and Potential Analysis of Biogas in Eskisehir. Uludağ Univ J Fac Eng 2010;15:155–60. doi:10.17482/uujfe.18751.
  • [13] Akbulut A. Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study. Energy 2012;44:381–90. doi:10.1016/j.energy.2012.06.017.
  • [14] Avcioğlu AO, Türker U. Status and potential of biogas energy from animal wastes in Turkey. Renew Sustain Energy Rev 2012;16:1557–61. doi:10.1016/j.rser.2011.11.006.
  • [15] Acaroğlu M, Aydoğan H. Biofuels energy sources and future of biofuels energy in Turkey. Biomass and Bioenergy 2012;36:69–76. doi:10.1016/j.biombioe.2011.10.004.
  • [16] Baran MF, Lüle F, Gökdoğan O. Adıyaman ilinin hayvansal atıklardan elde edilebilecek enerji potansiyeli. Turkish J Agric Nat Sci 2017;4:245–9.
  • [17] Karaca C. Hatay İlinin Hayvansal Gübre Kaynağından Üretilebilir Biyogaz Potansiyelinin Belirlenmesi. Mustafa Kemal Üniversitesi Ziraat Fakültesi Derg 2017;22:34–9.
  • [18] Özer B. Biogas energy opportunity of Ardahan city of Turkey. Energy 2017;139:1144–52. doi:10.1016/j.energy.2017.07.052.
  • [19] Meyer AKP, Ehimen EA, Holm-Nielsen JB. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass and Bioenergy 2018;111:154–64. doi:10.1016/j.biombioe.2017.05.013.
  • [20] Can A. The statistical modeling of potential biogas production capacity from solid waste disposal sites in Turkey. J Clean Prod 2020;243:118501. doi:10.1016/j.jclepro.2019.118501.
  • [21] Başçetinçelik A, Karaca C, Öztürk HH, Kacıra M, Ekinci K. Agricultural Biomass Potential in Turkey. 9th Int. Congr. Mech. Energy Agric., 2005, p. 195–9.
  • [22] Ozsoy G, Alibas İi. GIS mapping of biogas potential from animal wastes in Bursa, Turkey. Int J Agric Biol Eng 2015;8:74–83.
  • [23] Koçak İ, Boran K. Türkiye’deki İllerin Elektrik Tüketim Etkinliklerinin Veri Zarflama Analizi İle Değerlendirilmesi. J Polytech 2018;0900:351–65. doi:10.2339/politeknik.444371.
  • [24] Kızılaslan H, Onurlubaş HE. Potential of production of biogas from animal origin waste in Turkey (Tokat province example). J Anim Vet Adv 2010;9:1083–7.
  • [25] Eryilmaz T, Yesilyurt MK, Gokdogan O, Yumak B. Determination of Biogas Potential from Animal Waste in Turkey : A Case Study for Yozgat Province. Eur J Sci Technol 2015;2:106–11.
  • [26] Polat Bulut A, Topal Canbaz G. Hayvan atıklarından Sivas ili Biyogaz potansiyelinin araştırılması. Karaelmas Fen ve Mühendislik Derg 2019;9:1–10. doi:10.7212/zkufbd.v9i1.1010.

An Investigation for the Potential of Biogas to be Produced from Animal Waste in Corum

Yıl 2021, Cilt: 9 Sayı: 2, 246 - 261, 27.06.2021
https://doi.org/10.29109/gujsc.889846

Öz

One of the most important current issues is obtaining and efficiently using energy, a basic necessity of life. With the continuous development of technology and increase in the world population, energy demands keep increasing. In general, the global energy production needs are met with fossil-sourced fuels. However, due to the fact that fossil fuels will be exhausted over time, together with the damage that is inflicted on the environment, people have sought different resources. Biogas energy is a type of renewable energy source that attracts the attention of researchers. In this study, the potential of biogas that can be obtained from animal wastes within the province of Çorum and its surrounding districts was investigated. The amount of biogas that can be produced in the province and per district has been determined. The quantities of biogas that can be generated from the wastes of bovine (cattle, buffalo), ovine (goat, sheep) and poultry (chicken, goose, duck) was calculated. The calorific value of biogas that can be produced and the amount of electricity that can be generated have also been determined. The evaluations in this study have revealed that the total amount of electricity that can be produced from biogas is 80748.8 MWh per year from cattle waste, 3506.7 MWh from ovine animals waste and 16064.4 MWh from poultry waste. In total, the amount of electricity that can be produced for Çorum province has been determined to be 100319.9 MWh per year. It has been found that CO2 emissions from biogas-generated electricity will be 2608.06 tons. When compared to alternatively sourced electricity, it was found that when the same amount of electricity is obtained from natural gas, CO2 emission will be approximately 20 times higher, and when the electricity is obtained from imported coal, the CO2 emission will be 34 times that produced when using biogas.

Kaynakça

  • [1] Cheah WY, Ling TC, Show PL, Juan JC, Chang JS, Lee DJ. Cultivation in wastewaters for energy: A microalgae platform. Appl Energy 2016;179:609–25. doi:10.1016/j.apenergy.2016.07.015.
  • [2] Kligerman DC, Bouwer EJ. Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review. Renew Sustain Energy Rev 2015;52:1834–46. doi:10.1016/j.rser.2015.08.030.
  • [3] Seyitoglu SS, Dincer I, Kilicarslan A. Energy and exergy analyses of hydrogen production by coal gasification. Int J Hydrogen Energy 2017;42:2592–600. doi:10.1016/j.ijhydene.2016.08.228.
  • [4] Seyitoglu SS, Dincer I, Kilicarslan A. Assessment of an IGCC based trigeneration system for power, hydrogen and synthesis fuel production. Int J Hydrogen Energy 2016;41:8168–75. doi:10.1016/j.ijhydene.2015.10.093.
  • [5] Lam MK, Lee KT. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnol Adv 2012;30:673–90. doi:10.1016/j.biotechadv.2011.11.008.
  • [6] Rawat I, Ranjith Kumar R, Mutanda T, Bux F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 2011;88:3411–24. doi:10.1016/j.apenergy.2010.11.025.
  • [7] Kadam R, Panwar NL. Recent advancement in biogas enrichment and its applications. Renew Sustain Energy Rev 2017;73:892–903. doi:10.1016/j.rser.2017.01.167.
  • [8] Pizzuti L, Martins CA, Lacava PT. Laminar burning velocity and flammability limits in biogas: A literature review. Renew Sustain Energy Rev 2016;62:856–65. doi:10.1016/j.rser.2016.05.011.
  • [9] Çanka Kılıç F. Biyogaz, Önemi̇, Genel Durumu ve Türki̇ye’deki̇ Yeri̇. Mühendis ve Makina 2011;52:94–106.
  • [10] Abdeshahian P, Lim JS, Ho WS, Hashim H, Lee CT. Potential of biogas production from farm animal waste in Malaysia. Renew Sustain Energy Rev 2016;60:714–23. doi:10.1016/j.rser.2016.01.117.
  • [11] Kaygusuz K, Türker MF. Biomass energy potential in Turkey. Renew Energy 2002;26:661–78. doi:10.1016/S0960-1481(01)00154-9.
  • [12] Ergür HS. Cost and Potential Analysis of Biogas in Eskisehir. Uludağ Univ J Fac Eng 2010;15:155–60. doi:10.17482/uujfe.18751.
  • [13] Akbulut A. Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study. Energy 2012;44:381–90. doi:10.1016/j.energy.2012.06.017.
  • [14] Avcioğlu AO, Türker U. Status and potential of biogas energy from animal wastes in Turkey. Renew Sustain Energy Rev 2012;16:1557–61. doi:10.1016/j.rser.2011.11.006.
  • [15] Acaroğlu M, Aydoğan H. Biofuels energy sources and future of biofuels energy in Turkey. Biomass and Bioenergy 2012;36:69–76. doi:10.1016/j.biombioe.2011.10.004.
  • [16] Baran MF, Lüle F, Gökdoğan O. Adıyaman ilinin hayvansal atıklardan elde edilebilecek enerji potansiyeli. Turkish J Agric Nat Sci 2017;4:245–9.
  • [17] Karaca C. Hatay İlinin Hayvansal Gübre Kaynağından Üretilebilir Biyogaz Potansiyelinin Belirlenmesi. Mustafa Kemal Üniversitesi Ziraat Fakültesi Derg 2017;22:34–9.
  • [18] Özer B. Biogas energy opportunity of Ardahan city of Turkey. Energy 2017;139:1144–52. doi:10.1016/j.energy.2017.07.052.
  • [19] Meyer AKP, Ehimen EA, Holm-Nielsen JB. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass and Bioenergy 2018;111:154–64. doi:10.1016/j.biombioe.2017.05.013.
  • [20] Can A. The statistical modeling of potential biogas production capacity from solid waste disposal sites in Turkey. J Clean Prod 2020;243:118501. doi:10.1016/j.jclepro.2019.118501.
  • [21] Başçetinçelik A, Karaca C, Öztürk HH, Kacıra M, Ekinci K. Agricultural Biomass Potential in Turkey. 9th Int. Congr. Mech. Energy Agric., 2005, p. 195–9.
  • [22] Ozsoy G, Alibas İi. GIS mapping of biogas potential from animal wastes in Bursa, Turkey. Int J Agric Biol Eng 2015;8:74–83.
  • [23] Koçak İ, Boran K. Türkiye’deki İllerin Elektrik Tüketim Etkinliklerinin Veri Zarflama Analizi İle Değerlendirilmesi. J Polytech 2018;0900:351–65. doi:10.2339/politeknik.444371.
  • [24] Kızılaslan H, Onurlubaş HE. Potential of production of biogas from animal origin waste in Turkey (Tokat province example). J Anim Vet Adv 2010;9:1083–7.
  • [25] Eryilmaz T, Yesilyurt MK, Gokdogan O, Yumak B. Determination of Biogas Potential from Animal Waste in Turkey : A Case Study for Yozgat Province. Eur J Sci Technol 2015;2:106–11.
  • [26] Polat Bulut A, Topal Canbaz G. Hayvan atıklarından Sivas ili Biyogaz potansiyelinin araştırılması. Karaelmas Fen ve Mühendislik Derg 2019;9:1–10. doi:10.7212/zkufbd.v9i1.1010.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Sertaç Samed Seyitoglu 0000-0002-6694-953X

Emir Avcıoğlu Bu kişi benim 0000-0002-6560-2921

Yayımlanma Tarihi 27 Haziran 2021
Gönderilme Tarihi 2 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 2

Kaynak Göster

APA Seyitoglu, S. S., & Avcıoğlu, E. (2021). An Investigation for the Potential of Biogas to be Produced from Animal Waste in Corum. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 9(2), 246-261. https://doi.org/10.29109/gujsc.889846

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526