Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination Working Modes of Unmanned Aerial Vehicles (UAV) over Encrypted Wi-Fi Traffic using Artificial Neural Networks

Yıl 2021, Cilt: 9 Sayı: 3, 562 - 572, 30.09.2021
https://doi.org/10.29109/gujsc.980170

Öz

Developing technology has also made the Unmanned Aerial Vehicles (UAV) widespread. While UAVs provide beneficial use in many sectors from engineering solutions to visual arts, they also come up with malicious uses and can even be used as a tool for committing crimes. Although the states are trying to register its use with legislation in order to prevent this problem, the problem has not been completely eliminated. The most important problem we face about UAVs is to be able to percept quickly and effectively for what purpose they are flying over a certain region. Although previous studies in the literature were partially successful in solving this problem, it could not be considered as an effective solution due to high costs and long detection time.
In this study, the encrypted wi-fi traffic was tried to be defined by the data packet size analysis method to determine the operating modes of the UAVs. Since the amount of data and data processing speed are the most important factors in the detection of UAVs, processes based on artificial intelligence and machine learning have been applied. Using the feed-forward backpropagation artificial neural network method, the operating modes of the UAVs were determined and a success rate of 99.29% was achieved.

Kaynakça

  • Erdinç Z., Aydınbaş G., Yüksek Teknoloji Ürünleri İhracı ve Belirleyicileri: Panel Veri Analizi, International Social Mentality and Researcher Thinkers Journal, No. 30 (2020) 496-507.
  • Mohamed N., Al-Jaroodi J., Jawhar I., Idries A., Mohammed F., Unmanned Aerial Vehicles Applications İn Future Smart Cities, Technological Forecasting & Social Change, 153 (2020) 119293.
  • Altawy R., Youssef A.M., Security, Privacy, and Safety Aspects of Civilian Drones: A Survey, ACM Transactions on Cyber-Physical Systems, 1(2) (2016) 1-25.
  • NYPOST, Civilian Drone Crashes İnto Army Helicopter, https://nypost.com/2017/09/22/army-helicopter-hit-by-drone.
  • RT, Peeping Drone: UAV Hovers Outside Of Massachusetts Teen's Bedroom Window, https://www.rt.com/usa/341404-drone-privacy-teenager-window.
  • NYTIMES, White House Drone Crash Described As A U.S. Worker’s Drunken Lark, https://www.nytimes.com/2015/01/28/us/white-house-drone.html.
  • CNNTURK, Ankara'da Lüks Villadan 4 Milyon Liralık Hırsızlık... Günlerce "Drone" İle İzlemişler, https://www.cnnturk.com/turkiye/ankarada-luks-villadan-4-milyon-liralik-hirsizlik-gunlerce-drone-ile-izlemisler.
  • CNNTURK2, Atatürk Havalimanı Üzerine Drone Uçaran Kişiye Hapis Cezası Verildi, https://www.cnnturk.com/turkiye/ataturk-havalimani-uzerine-drone-ucaran-kisiye-hapis-cezasi - verildi.
  • FAA, Federal Aviation Administration, https://www.faa.gov.
  • İHAY, İHA Yönetmeliği, http://web.shgm.gov.tr/documents/ sivilhavacilik/files/mevzuat/sektorel/ talimatlar/SHT-IHA_WEB.pdf.
  • Moses A., Rutherford M.J., Valavanis K.P., Radar-Based Detection and identificitation for Miniature Air Vehicles, IEEE International Conference on Control Applications (CCA) Part of 2011 IEEE Multi-Conference on Systems and Control, Denver, 28-30 (2011) 933-940.
  • Salhi M., Boudriga N., Multi-Array Spherical LIDAR System for Drone Detection, 22nd International Conference on Transparent Optical Networks (ICTON), (2020), doi-10.1109/ICTON51198.2020.9203381.
  • Sedunov A., Haddad D., Salloum H., Sutin A., Sedunov N., Yakubovskiy A., Stevens Drone Detection Acoustic System and Experiments in Acoustics UAV Tracking, IEEE International Symposium on Technologies for Homeland Security (HST), USA, (2019), doi- 10.1109/HST47167.2019.9032916.
  • Ampatzidis Y., Partel V., Costa L., Agroview: Cloud-Based Application To Process, Analyze And Visualize UAV Collected Data For Precision Agriculture Applications Utilizing Artificial İntelligence, Computers and Electronics in Agriculture 174 (2020) 105457, doi-10.1016/j.compag.2020.105457.
  • Chithapuram C., Kumar A., Artificial Intelligence Guidance for Unmanned Aerial Vehicles in Three Dimensional Space, International Conference on Conteporary Computing and Informatics (IC3I), Mysore India, (2014), doi-10.1109/IC3I.2014.7019634.
  • Alipour-Fanid A., Dabaghchian M., Wang N., Wang P., Zhao L., Zeng K., Machine Learning-Based Delay-Aware UAV Detection and Operation Mode Identification over Encrypted Wi-Fi Traffic, IEEE CNS International Workshop On Cyber-Physical Systems Security (CPS-Sec), USA, (2019), doi-10.1109/TIFS.2019.2959899.
  • UCI, Unmanned Aerial Vehicle (UAV) Intrusion Detection Data Set, https://archive.ics.uci.edu/ml/datasets/Unmanned+Aerial+Vehicle+%28UAV%29+Intrusion+Detection.
  • Banerjee U., Ashutosh V., Mukul S., Evaluation of the Capabilities of WireShark as a tool for Intrusion Detection, International Journal of Computer Applications 6-7 (2010), doi-10.5120/1092-1427.
  • McGregor A., Hall M., Lorier P., Brunskill J., Flow Clustering Using Machine Learning Techniques, Lecture Notes in Computer Science, 3015 (2004) 205-214.
  • Li Q., Alipour-Fanid A., Slawski M., Ye Y., Wu L., Zeng K., Zhao L., Large-scale Cost-aware Classification Using Feature Computational Dependency Graph, IEEE Transactions on Knowledge and Data Engineering, 33-5 (2021) 2029-2044.
  • Sertkaya C., Yurtay N., Artificial İmmune System Based Wastewater Parameter Estimation, Turkish Journal of Electrical Engineering & Computer Sciences, 26 (2018) 3356- 3366.
  • Yıldız K., Çamurcu Y., Veri Madenciliğinde Temel Bileşenler Analizi ve Negatifsiz Matris Çarpanlarına Ayırma Tekniklerinin Karşılaştırmalı Analizi, Akademik Bilişim’10, (2010).
  • Qian N., On The Momentum Term İn Gradient Descent Learning Algorithms, Neural Networks 12 (1999) 145-151.
  • Ozkan M. T., Kaygısız M., Elipsel Delikli Plakalarda Oluşan Gerilmelerin Tanımlanması ve Yapay Sinir Ağları ile Tahmini, GU J Sci, Part C, 4-3 (2016) 135-145.

İnsansız Hava Araçlarının (İHA) Şifrelenmiş Wi-Fi Trafiği Üzerinden Çalışma Modlarının Yapay Sinir Ağları Aracılığı İle Belirlenmesi

Yıl 2021, Cilt: 9 Sayı: 3, 562 - 572, 30.09.2021
https://doi.org/10.29109/gujsc.980170

Öz

Gelişen teknoloji İnsansız Hava Araçları (İHA)’nın kullanımının yaygınlaşmasını sağlamıştır. İHA’lar mühendislik çözümlerinden görsel sanatlara kadar bir çok sektöre faydalı kullanım imkanı sağlarken aynı zamanda kötü amaçlı kullanımlarla da karşımıza çıkmakta, hatta suç işleme aracı olarak da kullanılabilmektedir. Devletler bu sorunun önüne geçebilmek için mevzuatlar ile kullanımını kayıt altına almaya çalışıyor olsa da sorun tamamen ortadan kaldırılabilmiş değildir. İHA’ların belirli bir bölge üzerinde hızlı ve etkin bir şekilde algılanabilmesi ve ne amaçla uçtuğunun tespit edilebilmesi karşımıza çıkan en önemli sorundur. Literatürde daha önce yapılan çalışmalar bu sorunun çözümünde kısmen başarılı olmuş olsa da yüksek maliyetler ve algılama süresi uzunluğu nedeniyle efektif bir çözüm olarak değerlendirilememiştir.
Bu çalışmada İHA’ların çalışma modlarının tespiti için şifrelenmiş wi-fi trafiği, veri paketi boyut analizi yöntemiyle tanımlanmaya çalışılmıştır. Eldeki veri miktarı ve veri işleme hızı İHA’ların tespitinde en önemli etken olduğundan yapay zeka ve makine öğrenmesi temelli işlemler uygulanmıştır. İleri beslemeli ve geri yayıyımlı yapay sinir ağları yöntemi kullanılarak İHA’ların çalışma modları tahmin edilmiş ve %99,29 başarı oranı elde edilmiştir.

Kaynakça

  • Erdinç Z., Aydınbaş G., Yüksek Teknoloji Ürünleri İhracı ve Belirleyicileri: Panel Veri Analizi, International Social Mentality and Researcher Thinkers Journal, No. 30 (2020) 496-507.
  • Mohamed N., Al-Jaroodi J., Jawhar I., Idries A., Mohammed F., Unmanned Aerial Vehicles Applications İn Future Smart Cities, Technological Forecasting & Social Change, 153 (2020) 119293.
  • Altawy R., Youssef A.M., Security, Privacy, and Safety Aspects of Civilian Drones: A Survey, ACM Transactions on Cyber-Physical Systems, 1(2) (2016) 1-25.
  • NYPOST, Civilian Drone Crashes İnto Army Helicopter, https://nypost.com/2017/09/22/army-helicopter-hit-by-drone.
  • RT, Peeping Drone: UAV Hovers Outside Of Massachusetts Teen's Bedroom Window, https://www.rt.com/usa/341404-drone-privacy-teenager-window.
  • NYTIMES, White House Drone Crash Described As A U.S. Worker’s Drunken Lark, https://www.nytimes.com/2015/01/28/us/white-house-drone.html.
  • CNNTURK, Ankara'da Lüks Villadan 4 Milyon Liralık Hırsızlık... Günlerce "Drone" İle İzlemişler, https://www.cnnturk.com/turkiye/ankarada-luks-villadan-4-milyon-liralik-hirsizlik-gunlerce-drone-ile-izlemisler.
  • CNNTURK2, Atatürk Havalimanı Üzerine Drone Uçaran Kişiye Hapis Cezası Verildi, https://www.cnnturk.com/turkiye/ataturk-havalimani-uzerine-drone-ucaran-kisiye-hapis-cezasi - verildi.
  • FAA, Federal Aviation Administration, https://www.faa.gov.
  • İHAY, İHA Yönetmeliği, http://web.shgm.gov.tr/documents/ sivilhavacilik/files/mevzuat/sektorel/ talimatlar/SHT-IHA_WEB.pdf.
  • Moses A., Rutherford M.J., Valavanis K.P., Radar-Based Detection and identificitation for Miniature Air Vehicles, IEEE International Conference on Control Applications (CCA) Part of 2011 IEEE Multi-Conference on Systems and Control, Denver, 28-30 (2011) 933-940.
  • Salhi M., Boudriga N., Multi-Array Spherical LIDAR System for Drone Detection, 22nd International Conference on Transparent Optical Networks (ICTON), (2020), doi-10.1109/ICTON51198.2020.9203381.
  • Sedunov A., Haddad D., Salloum H., Sutin A., Sedunov N., Yakubovskiy A., Stevens Drone Detection Acoustic System and Experiments in Acoustics UAV Tracking, IEEE International Symposium on Technologies for Homeland Security (HST), USA, (2019), doi- 10.1109/HST47167.2019.9032916.
  • Ampatzidis Y., Partel V., Costa L., Agroview: Cloud-Based Application To Process, Analyze And Visualize UAV Collected Data For Precision Agriculture Applications Utilizing Artificial İntelligence, Computers and Electronics in Agriculture 174 (2020) 105457, doi-10.1016/j.compag.2020.105457.
  • Chithapuram C., Kumar A., Artificial Intelligence Guidance for Unmanned Aerial Vehicles in Three Dimensional Space, International Conference on Conteporary Computing and Informatics (IC3I), Mysore India, (2014), doi-10.1109/IC3I.2014.7019634.
  • Alipour-Fanid A., Dabaghchian M., Wang N., Wang P., Zhao L., Zeng K., Machine Learning-Based Delay-Aware UAV Detection and Operation Mode Identification over Encrypted Wi-Fi Traffic, IEEE CNS International Workshop On Cyber-Physical Systems Security (CPS-Sec), USA, (2019), doi-10.1109/TIFS.2019.2959899.
  • UCI, Unmanned Aerial Vehicle (UAV) Intrusion Detection Data Set, https://archive.ics.uci.edu/ml/datasets/Unmanned+Aerial+Vehicle+%28UAV%29+Intrusion+Detection.
  • Banerjee U., Ashutosh V., Mukul S., Evaluation of the Capabilities of WireShark as a tool for Intrusion Detection, International Journal of Computer Applications 6-7 (2010), doi-10.5120/1092-1427.
  • McGregor A., Hall M., Lorier P., Brunskill J., Flow Clustering Using Machine Learning Techniques, Lecture Notes in Computer Science, 3015 (2004) 205-214.
  • Li Q., Alipour-Fanid A., Slawski M., Ye Y., Wu L., Zeng K., Zhao L., Large-scale Cost-aware Classification Using Feature Computational Dependency Graph, IEEE Transactions on Knowledge and Data Engineering, 33-5 (2021) 2029-2044.
  • Sertkaya C., Yurtay N., Artificial İmmune System Based Wastewater Parameter Estimation, Turkish Journal of Electrical Engineering & Computer Sciences, 26 (2018) 3356- 3366.
  • Yıldız K., Çamurcu Y., Veri Madenciliğinde Temel Bileşenler Analizi ve Negatifsiz Matris Çarpanlarına Ayırma Tekniklerinin Karşılaştırmalı Analizi, Akademik Bilişim’10, (2010).
  • Qian N., On The Momentum Term İn Gradient Descent Learning Algorithms, Neural Networks 12 (1999) 145-151.
  • Ozkan M. T., Kaygısız M., Elipsel Delikli Plakalarda Oluşan Gerilmelerin Tanımlanması ve Yapay Sinir Ağları ile Tahmini, GU J Sci, Part C, 4-3 (2016) 135-145.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Cengiz Sertkaya 0000-0001-7459-2473

Osman Coşkun 0000-0002-5916-0573

Yayımlanma Tarihi 30 Eylül 2021
Gönderilme Tarihi 7 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 3

Kaynak Göster

APA Sertkaya, C., & Coşkun, O. (2021). Determination Working Modes of Unmanned Aerial Vehicles (UAV) over Encrypted Wi-Fi Traffic using Artificial Neural Networks. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 9(3), 562-572. https://doi.org/10.29109/gujsc.980170

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526