Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Potential of Using Lakes and Dams as Solar Power Plants: The Case of Yamula Dam

Yıl 2021, Cilt: 9 Sayı: 4, 726 - 738, 29.12.2021
https://doi.org/10.29109/gujsc.1002791

Öz

The increase in energy consumption causes a negative impact on the environment. The most important factor in sustainable development is the widespread use of renewable energy. The transition to renewable energy sources in the energy sector has started to be implemented in different fields. Electricity is produced by installing floating solar power plants (SPP) on the water surfaces of seas, lakes and dams. There is no floating SPP installation in our country yet, and it has been seen that there is a need for experimental and scientific studies in this field. With this study, it is aimed to determine the floating SPP potential that can be installed on the water surface of the Yamula Dam, which produces hydroelectricity in the industrial city of Kayseri. The Global Solar Atlas (GSA) simulation program was used to determine the potential power of floating SPP and the electricity production, and the RETScreen Program was used for the greenhouse gas emission analysis. The case of installing floating solar power plants in 10% of the minimum water level area of Yamula Dam has been investigated. In the simulation, it has been determined that the total installed power potential of the floating SPP to be installed on Yamula Dam will be 626.6 MW. In addition, it has been determined that the floating SPP will produce a total of 872.3 GWh of electricity per year with this power.

Kaynakça

  • World bank Group, International Finans Corporation, Floating Solar Photovoltaic on the Rise: https://www.ifc.org/wps/wcm/connect/6ef92aa8-bf29-4c43-8edc-a0f7555e6a5d/IFC-EnergyNotes-FloatingSolar_WEB.pdf?MOD=AJPERES&CVID=n8KDCtS Access date: 3 August 2021.
  • International Renewable Energy Agency, Offshore renewables, July, 2021, https://www.irena.org/publications/2021/Jul/Offshore-Renewables-An-Action-Agenda-for-Deployment Access date: 3 August 2021.
  • Hopson, C. (2013). Floating Solar Going Global With 10GW More by 2025: Fitch. Recharge. www.rechargenews.com/transition/floating-solar-going-globalwith-10gw-more-by-2025-fitch/2-1-894336 Access date: 3 August 2021.
  • Haugwitz, F. (2020). Floating Solar PV Gains Global Momentum. PV Magazine. www.pv-magazine.com/2020/09/22/floating-solar-pv-gains-global-momentum Access date: 3 August 2021.
  • Trapani, K., and Millar, D.L. (2013). Proposing Offshore Photovoltaic (PV) Technology to The Energy Mix of The Maltese Islands. Energy Conversion Management, 67, 18–26.
  • Ferrer-Gisbert, C., Ferrán-Gozálvez, J.J., Redón-Santafé, M., Ferrer-Gisbert, P., Sánchez-Romero, F.J. and Torregrosa-Soler, J.B. (2013). A New Photovoltaic Floating Cover System for Water Reservoirs. Renewable Energy, 60 (C), 63-70.
  • Trapani, K., Millar, D.L. and Smith, H.C.M. (2013). Novel Offshore Application of Photovoltaics in Comparison to Conventional Marine Renewable Energy Technologies. Renewable Energy, 50, 878-879.
  • Tina, G.M., Scavo, F.B., Merlo, L. and Bizzarri, F. (2021). Comparative Analysis Of Monofacial And Bifacial Photovoltaic Modules For Floating Power Plants. Applied Energy, 281, 116084. https://doi.org/10.1016/j.apenergy.2020.116084
  • Liu H., Krishna V., Leung J.L., Reindl T. and Zhao L. (2018). Field Experience and Performance Analysis of Floating PV Technologies in The Tropics. Progress in Photovoltaics, 26(12): 957- 967. https://onlinelibrary.wiley.com/doi/abs/10.1002/pip.3039
  • Choi Y-K. (2014). A Study on Power Generation Analysis of Floating PV System Considering Environmental Impact. International Journal Software Engineering Applied, 8, 75- 84.
  • Ryu, D.G. and Lee, K.B. (2019). Flow Characteristics And Wind Loads on The Solar Panel and Floating System of Floating Solar Generato. Journal Korea Academia Industrial Cooperation Society, 20, 229–235.
  • Yıldız, C. ve Akgül M.A. (2020). PV Açık Deniz Santralleri: Güney Türkiye Denizleri için Üretim Kapasitelerinin İncelenmesi. Uluslararası GAP Yenilenebilir Enerji ve Enerji Verimliliği Kongresi, Şanlıurfa, 102–105.
  • Yıldız, C., “PV Açık Deniz Santralleri: Tasarım çalışması”, Yüksek Lisans Tezi, Yeditepe Üniversitesi, Fen Bilimleri Enstitüsü, 2020.
  • Cazzaniga, R., Cicu, M., Rosa-Clot, M., Rosa-Clot, P., Tina, G.M. and Ventura, C., “Floating photovoltaic plants: Performance analysis and design solutions”, Renewable and Sustainable Energy Reviews, 2018, 81, 1730–1741.
  • Yeraltı haber, Yüzer güneş panelleri barajlardaki kuraklığı önleyecek, https://www.yeraltihaber.com/haber/yuzer-gunes-panelleri-barajlarda-kurakligi-onleyecek-1249 Erişim tarihi: 16 Eylül 2021.
  • Rosa-Clot, M. and Tina, G.M. (2017). Submerged and Floating Photovoltaic Systems: Modelling Design and Case Studies, London, Academic Press.
  • Melvin G.K.X. (2015). Experimental Study of The Effect of Floating Solar Panels on Reducing Evaporation in Singapore Reservoirs., Engineering Department of Civil and Environmental Engineering of University Of Singapore, A Thesıs Submitted for the Degree of Bachelor of Engineering.
  • Enerji ve Tabii Kaynaklar Bakanlığı, Enerjisi Potansiyel Atlası (GEPA), https://gepa.enerji.gov.tr/MyCalculator/ Erişim tarihi: 3 Ağustos 2021.
  • Elektrik Üretim A.Ş., EÜAŞ Yıllık Raporu 2020, https://www.euas.gov.tr/tr-TR/yillik-raporlar Erişim tarihi: 3 August 2021.
  • Enerji Piyasaları İşletme A.Ş., Şeffaflık Platformu, https://seffaflik.epias.com.tr Erişim tarihi: 3 Ağustos 2021.
  • Kayseri ve Civarı Elektrik Türk A.Ş., Bölgemizde tüketilen enerji miktarları, https://www.kcetas.com.tr/bolgemizde-tuketilen-enerji-miktarlari/ Erişim tarihi: 3 Ağustos 2021.
  • World bank Group, International Finans Corporation, Global Solar Atlas, https://globalsolaratlas.info/map?c=11.609193,8.261719,3 Access date: 3 August 2021.
  • Vasarevicius, D., & Martavicius, R. (2011). Solar İrradiance Model for Solar Electric Panels and Solar Thermal Collectors in Lithuania. Electronics and Electrical Engineering, 108, (2), 3-6.
  • Joo, H.J., Lee, N.H. and Lee, S.W. (2013). Floating Photovoltaic Power Generation System. The magazine of the Korean Society for Advanced Composite Structures, 4, 31–39.
  • Trapani, K. and Millar, D.L. (2013). Proposing Offshore Photovoltaic (PV) Technology to The Energy Mix of The Maltese Islands. Energy Conversion Management, 67, 18–26.
  • Oh, J.S. and Jang, J.H. (2018). A Study on The Installation Angle of The Marine Solar Power Generation System. Journal of Navigation Port Research, 42, 167–176.
  • Durković V, Đurišić Ž. (2017). Analysis of The Potential for Use of Floating PV Power Plant on The Skadar Lake for Electricity Supply of Aluminium Plant in Montenegro. Energies, 10(10), 1505.
  • Chou, C-C., Chung, P-H. and Yang, R-Y. (2019). Wind Loads on a Solar Panel at High Tilt Angles. Applied Sciences, 9(8), 1594, https://doi.org/10.3390/app9081594
  • Çevre ve Şehircilik Bakanlığı, Kayseri ve ili temiz hava eylem planı, 2014, https://webdosya.csb.gov.tr/db/kayseri/webmenu/webmenu13251.pdf Erişim tarihi: 3 Ağustos 2021.
  • Martin, K. (2021). Environmental and Financial Analysis of Solar Swimming Pool Heating System for 3 Different Regions of Turkey Using RETScreen Clean Energy Management Software. Gazi University Journal of Science Part C: Design and Technology, 9 (3), 505-515. doi: 10.29109/gujsc.982564
  • Government of Canada, The RETScreen Clean Energy Management Software, https://www.nrcan.gc.ca/maps-tools-publications/tools/data-analysis-software-modelling/retscreen/7465 Access date: 3 August 2021.
  • Tarım ve Orman Bakanlığı, Yamula Baraj Gölü Limnolojisi, 2009, https://cdniys.tarimorman.gov.tr/api/File/GetFile/425/KonuIcerik/767/1115/DosyaGaleri/yamula-baraj-golu-limnolojisi.pdf Erişim tarihi: 3 Ağustos 2021.
  • Abuşka, M. Güneş Enerjisi ve Uygulamaları Ders Notları. https://docplayer.biz.tr/2698177-Yrd-doc-dr-mesut-abuska.html Erişim tarihi: 3 Ağustos 2021.

Göl ve Barajların Güneş Enerji Santrali Olarak Kullanım Potansiyelinin İncelenmesi Yamula Barajı Örneği

Yıl 2021, Cilt: 9 Sayı: 4, 726 - 738, 29.12.2021
https://doi.org/10.29109/gujsc.1002791

Öz

Enerji tüketimindeki artış çevre açısından olumsuz etkiye sebep olmaktadır. Sürdürülebilir kalkınmada en önemli unsur yenilenebilir enerji kullanımının yaygınlaşmasıdır. Enerji sektöründe yenilenebilir enerji kaynaklarına geçiş farklı sahalarda uygulanmaya başlamıştır. Deniz, göl ve barajların su yüzeyleri üzerine yüzer güneş enerji santralleri (GES) kurularak elektrik enerjisi üretilmektedir. Ülkemizde yüzer GES kurulumu henüz bulunmayıp, bu alanda deneysel ve bilimsel çalışmalara ihtiyaç olduğu görülmüştür. Bu çalışma ile sanayi şehri olan Kayseri’de hidroelektrik üretimi yapan Yamula Barajının su yüzeyine kurulabilecek yüzer GES potansiyelinin belirlenmesi amaçlanmıştır. Yüzer GES potansiyel gücü ile elektrik üretiminin belirlenmesinde Küresel Güneş Atlası (GSA) simülasyon programı ve sera gazı emisyon analizinde ise RETScreen Programı kullanılmıştır. Yamula Barajının minimum su seviyesindeki alanının %10’u kadar kısmında yüzer GES kurulması durumu incelenmiştir. Yapılan simülasyonda Yamula Barajına kurulacak olan yüzer GES’in toplam kurulu güç potansiyelinin 626,6 MW olacağı tespit edilmiştir. Ayrıca, yüzer GES’in bu güç ile yılda toplam 872,3 GWh elektrik üretimi yapacağı saptanmıştır.

Kaynakça

  • World bank Group, International Finans Corporation, Floating Solar Photovoltaic on the Rise: https://www.ifc.org/wps/wcm/connect/6ef92aa8-bf29-4c43-8edc-a0f7555e6a5d/IFC-EnergyNotes-FloatingSolar_WEB.pdf?MOD=AJPERES&CVID=n8KDCtS Access date: 3 August 2021.
  • International Renewable Energy Agency, Offshore renewables, July, 2021, https://www.irena.org/publications/2021/Jul/Offshore-Renewables-An-Action-Agenda-for-Deployment Access date: 3 August 2021.
  • Hopson, C. (2013). Floating Solar Going Global With 10GW More by 2025: Fitch. Recharge. www.rechargenews.com/transition/floating-solar-going-globalwith-10gw-more-by-2025-fitch/2-1-894336 Access date: 3 August 2021.
  • Haugwitz, F. (2020). Floating Solar PV Gains Global Momentum. PV Magazine. www.pv-magazine.com/2020/09/22/floating-solar-pv-gains-global-momentum Access date: 3 August 2021.
  • Trapani, K., and Millar, D.L. (2013). Proposing Offshore Photovoltaic (PV) Technology to The Energy Mix of The Maltese Islands. Energy Conversion Management, 67, 18–26.
  • Ferrer-Gisbert, C., Ferrán-Gozálvez, J.J., Redón-Santafé, M., Ferrer-Gisbert, P., Sánchez-Romero, F.J. and Torregrosa-Soler, J.B. (2013). A New Photovoltaic Floating Cover System for Water Reservoirs. Renewable Energy, 60 (C), 63-70.
  • Trapani, K., Millar, D.L. and Smith, H.C.M. (2013). Novel Offshore Application of Photovoltaics in Comparison to Conventional Marine Renewable Energy Technologies. Renewable Energy, 50, 878-879.
  • Tina, G.M., Scavo, F.B., Merlo, L. and Bizzarri, F. (2021). Comparative Analysis Of Monofacial And Bifacial Photovoltaic Modules For Floating Power Plants. Applied Energy, 281, 116084. https://doi.org/10.1016/j.apenergy.2020.116084
  • Liu H., Krishna V., Leung J.L., Reindl T. and Zhao L. (2018). Field Experience and Performance Analysis of Floating PV Technologies in The Tropics. Progress in Photovoltaics, 26(12): 957- 967. https://onlinelibrary.wiley.com/doi/abs/10.1002/pip.3039
  • Choi Y-K. (2014). A Study on Power Generation Analysis of Floating PV System Considering Environmental Impact. International Journal Software Engineering Applied, 8, 75- 84.
  • Ryu, D.G. and Lee, K.B. (2019). Flow Characteristics And Wind Loads on The Solar Panel and Floating System of Floating Solar Generato. Journal Korea Academia Industrial Cooperation Society, 20, 229–235.
  • Yıldız, C. ve Akgül M.A. (2020). PV Açık Deniz Santralleri: Güney Türkiye Denizleri için Üretim Kapasitelerinin İncelenmesi. Uluslararası GAP Yenilenebilir Enerji ve Enerji Verimliliği Kongresi, Şanlıurfa, 102–105.
  • Yıldız, C., “PV Açık Deniz Santralleri: Tasarım çalışması”, Yüksek Lisans Tezi, Yeditepe Üniversitesi, Fen Bilimleri Enstitüsü, 2020.
  • Cazzaniga, R., Cicu, M., Rosa-Clot, M., Rosa-Clot, P., Tina, G.M. and Ventura, C., “Floating photovoltaic plants: Performance analysis and design solutions”, Renewable and Sustainable Energy Reviews, 2018, 81, 1730–1741.
  • Yeraltı haber, Yüzer güneş panelleri barajlardaki kuraklığı önleyecek, https://www.yeraltihaber.com/haber/yuzer-gunes-panelleri-barajlarda-kurakligi-onleyecek-1249 Erişim tarihi: 16 Eylül 2021.
  • Rosa-Clot, M. and Tina, G.M. (2017). Submerged and Floating Photovoltaic Systems: Modelling Design and Case Studies, London, Academic Press.
  • Melvin G.K.X. (2015). Experimental Study of The Effect of Floating Solar Panels on Reducing Evaporation in Singapore Reservoirs., Engineering Department of Civil and Environmental Engineering of University Of Singapore, A Thesıs Submitted for the Degree of Bachelor of Engineering.
  • Enerji ve Tabii Kaynaklar Bakanlığı, Enerjisi Potansiyel Atlası (GEPA), https://gepa.enerji.gov.tr/MyCalculator/ Erişim tarihi: 3 Ağustos 2021.
  • Elektrik Üretim A.Ş., EÜAŞ Yıllık Raporu 2020, https://www.euas.gov.tr/tr-TR/yillik-raporlar Erişim tarihi: 3 August 2021.
  • Enerji Piyasaları İşletme A.Ş., Şeffaflık Platformu, https://seffaflik.epias.com.tr Erişim tarihi: 3 Ağustos 2021.
  • Kayseri ve Civarı Elektrik Türk A.Ş., Bölgemizde tüketilen enerji miktarları, https://www.kcetas.com.tr/bolgemizde-tuketilen-enerji-miktarlari/ Erişim tarihi: 3 Ağustos 2021.
  • World bank Group, International Finans Corporation, Global Solar Atlas, https://globalsolaratlas.info/map?c=11.609193,8.261719,3 Access date: 3 August 2021.
  • Vasarevicius, D., & Martavicius, R. (2011). Solar İrradiance Model for Solar Electric Panels and Solar Thermal Collectors in Lithuania. Electronics and Electrical Engineering, 108, (2), 3-6.
  • Joo, H.J., Lee, N.H. and Lee, S.W. (2013). Floating Photovoltaic Power Generation System. The magazine of the Korean Society for Advanced Composite Structures, 4, 31–39.
  • Trapani, K. and Millar, D.L. (2013). Proposing Offshore Photovoltaic (PV) Technology to The Energy Mix of The Maltese Islands. Energy Conversion Management, 67, 18–26.
  • Oh, J.S. and Jang, J.H. (2018). A Study on The Installation Angle of The Marine Solar Power Generation System. Journal of Navigation Port Research, 42, 167–176.
  • Durković V, Đurišić Ž. (2017). Analysis of The Potential for Use of Floating PV Power Plant on The Skadar Lake for Electricity Supply of Aluminium Plant in Montenegro. Energies, 10(10), 1505.
  • Chou, C-C., Chung, P-H. and Yang, R-Y. (2019). Wind Loads on a Solar Panel at High Tilt Angles. Applied Sciences, 9(8), 1594, https://doi.org/10.3390/app9081594
  • Çevre ve Şehircilik Bakanlığı, Kayseri ve ili temiz hava eylem planı, 2014, https://webdosya.csb.gov.tr/db/kayseri/webmenu/webmenu13251.pdf Erişim tarihi: 3 Ağustos 2021.
  • Martin, K. (2021). Environmental and Financial Analysis of Solar Swimming Pool Heating System for 3 Different Regions of Turkey Using RETScreen Clean Energy Management Software. Gazi University Journal of Science Part C: Design and Technology, 9 (3), 505-515. doi: 10.29109/gujsc.982564
  • Government of Canada, The RETScreen Clean Energy Management Software, https://www.nrcan.gc.ca/maps-tools-publications/tools/data-analysis-software-modelling/retscreen/7465 Access date: 3 August 2021.
  • Tarım ve Orman Bakanlığı, Yamula Baraj Gölü Limnolojisi, 2009, https://cdniys.tarimorman.gov.tr/api/File/GetFile/425/KonuIcerik/767/1115/DosyaGaleri/yamula-baraj-golu-limnolojisi.pdf Erişim tarihi: 3 Ağustos 2021.
  • Abuşka, M. Güneş Enerjisi ve Uygulamaları Ders Notları. https://docplayer.biz.tr/2698177-Yrd-doc-dr-mesut-abuska.html Erişim tarihi: 3 Ağustos 2021.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Ali Riza Dal 0000-0002-3646-2288

Yayımlanma Tarihi 29 Aralık 2021
Gönderilme Tarihi 30 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 4

Kaynak Göster

APA Dal, A. R. (2021). Investigation of the Potential of Using Lakes and Dams as Solar Power Plants: The Case of Yamula Dam. Gazi University Journal of Science Part C: Design and Technology, 9(4), 726-738. https://doi.org/10.29109/gujsc.1002791

                                     16168      16167     16166     21432        logo.png


    e-ISSN:2147-9526