Araştırma Makalesi
BibTex RIS Kaynak Göster

Al7075 Alaşımına İlave Edilen Al-5Ti-1B Tane İncelticinin Yaşlanma, Mikroyapı, Sertlik ve Korozif Özellikleri Üzerindeki Etkisi

Yıl 2022, Cilt: 10 Sayı: 4, 870 - 883, 30.12.2022
https://doi.org/10.29109/gujsc.1165103

Öz

Bu çalışmada, özellikle havacılık endüstrisi için kritik bir malzeme olan Al7075 alaşımına ağırlıkça %1 ve %2 oranında Al-5Ti-1B tane inceltici ilave edilerek 200 ℃’de 10 dakika, 1 saat, 2,5 saat, 5 saat ve 20 saat süre ile çökelme sertleşmesi ısıl işlemi uygulanmıştır. Tane inceltici ilave edilen ve edilmeyen tüm alaşımların mikroyapısal analizleri ile sertlik ve korozyon testleri gerçekleştirilmiştir. Elde edilen sonuçlardan alaşıma ilave edilen tane incelticinin alaşımın tane boyutunu ~%24 oranında azalttığı tespit edilmiştir. Bununla birlikte, tane inceltici ilave edilen alaşımların sertlik değerleri, çökelme sertleşmesi sonrası artış göstermiştir. Genel olarak tane inceltici ilave edilen alaşımların korozyon potansiyelleri, Al7075 alaşımına göre daha pozitif çıkmıştır. Benzer şekilde tane inceltici ilave edilen alaşımların korozyon akım yoğunluğu değerleri, Al7075 alaşımına göre daha düşük olarak ölçülmüştür.

Destekleyen Kurum

Zonguldak Bülent Ecevit Üniversitesi Bilimsel Araştırmalar Projeleri Kordinatörlüğü

Proje Numarası

2021-73338635-01

Teşekkür

Bu çalışma, Zonguldak Bülent Ecevit Üniversitesi BAP 2021-73338635-01 nolu proje ile desteklenmiştir.

Kaynakça

  • T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, Mater. Des. 56 (2014) 862–871. https://doi.org/https://doi.org/10.1016/j.matdes.2013.12.002.
  • M.C. Reboul, B. Baroux, Metallurgical aspects of corrosion resistance of aluminium alloys, Mater. Corros. 62 (2011) 215–233. https://doi.org/https://doi.org/10.1002/maco.201005650.
  • J. HIRSCH, Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China. 24 (2014) 1995–2002. https://doi.org/https://doi.org/10.1016/S1003-6326(14)63305-7.
  • P. Rambabu, N. Eswara Prasad, V. V Kutumbarao, R.J.H. Wanhill, Aluminium Alloys for Aerospace Applications BT - Aerospace Materials and Material Technologies : Volume 1: Aerospace Materials, in: N.E. Prasad, R.J.H. Wanhill (Eds.), Springer Singapore, Singapore, 2017: pp. 29–52. https://doi.org/10.1007/978-981-10-2134-3_2.
  • M.A. Wahid, A.N. Siddiquee, Z.A. Khan, Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint, Mar. Syst. Ocean Technol. 15 (2020) 70–80. https://doi.org/10.1007/s40868-019-00069-w.
  • D.S. MacKenzie, Metallurgy of Heat Treatable Aluminum Alloys, Heat Treat. Nonferrous Alloy. 4E (2016) 0. https://doi.org/10.31399/asm.hb.v04e.a0006287.
  • L. Hua, X. Hu, X. Han, Microstructure evolution of annealed 7075 aluminum alloy and its influence on room-temperature plasticity, Mater. Des. 196 (2020) 109192. https://doi.org/https://doi.org/10.1016/j.matdes.2020.109192.
  • A.D. Isadare, B. Aremo, M.O. Adeoye, O.J. Olawale, M.D. Shittu, Effect of heat treatment on some mechanical properties of 7075 aluminium alloy, Mater. Res. 16 (2013) 190–194. https://doi.org/10.1590/S1516-14392012005000167.
  • M.N. Ervina Efzan, H.J. Kong, C.K. Kok, Review: Effect of Alloying Element on Al-Si Alloys, Adv. Mater. Res. 845 (2014) 355–359. https://doi.org/10.4028/www.scientific.net/AMR.845.355.
  • H.C. Fang, H. Chao, K.H. Chen, Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn–Mg–Cu alloys, Mater. Sci. Eng. A. 610 (2014) 10–16. https://doi.org/https://doi.org/10.1016/j.msea.2014.05.021.
  • K. Chen, H. Liu, Z. Zhang, S. Li, R.I. Todd, The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments, J. Mater. Process. Technol. 142 (2003) 190–196. https://doi.org/https://doi.org/10.1016/S0924-0136(03)00597-1.
  • M. Çolak, A. İbrahim, Investigation of Wear Properties of Grain Refined and Modified A319 Aluminum Alloy Produced with Sand and Permanent Mold, 7 (2018) 134–137.
  • M. Çolak, R. Kayıkcı, Alüminyum Dökümlerinde Tane İnceltme, SAÜ Fen Bilim. Enstitüsü Derg. 13 (2009) 11–17.
  • İ. Arslan, E. GAVGALI, M. ÇOLAK, Kum Kalıba Dökülen Farklı Alüminyum Alaşımlarının Dökümünde Al5Ti1B ve AL10SR İlavesinin Mikroyapı Özelliklere Etkisinin İncelenmesi, Acad. Platf. J. Eng. Sci. 7 (2019) 237–244. https://doi.org/10.21541/apjes.424920.
  • K.T. Kashyap, T. Chandrashekar, Effects and mechanisms of grain refinement in aluminium alloys, Bull. Mater. Sci. 24 (2001) 345–353. https://doi.org/10.1007/BF02708630.
  • M. Baruah, A. Borah, Processing and precipitation strengthening of 6xxx series aluminium alloys: A review, Int. J. Mater. Sci. 1 (2020) 40–48. https://doi.org/10.22271/27078221.2020.v1.i1a.10.
  • G. Sha, K. O’Reilly, B. Cantor, R. Hamerton, J. Worth, Effect of Grain Refiner on Intermetallic Phase Formation in Directional Solidification of 6xxx Series Wrought Al Alloys, Mater. Sci. Forum. 331–337 (2000) 253–258. https://doi.org/10.4028/www.scientific.net/MSF.331-337.253.
  • A. Lui, P.S. Grant, I.C. Stone, K.A.Q. O’Reilly, The Role of Grain Refiner in the Nucleation of AlFeSi Intermetallic Phases During Solidification of a 6xxx Aluminum Alloy, Metall. Mater. Trans. A. 50 (2019) 5242–5252. https://doi.org/10.1007/s11661-019-05447-y.
  • G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys, Int. J. Met. 1 (2007) 31–40. https://doi.org/10.1361/asmhba0005302.
  • T. Li, S.C. Wang, K.H. Zheng, Effect of Al-5Ti-1B grain refiner on microstructure and mechanical properties of 7075 aluminum alloy, Mater. Sci. Forum. 817 (2015) 331–336. https://doi.org/10.4028/www.scientific.net/MSF.817.331.
  • D. Izcankurtaran, B. Tunca, G. Karatay, Investigation of the Effect of Grain Refinement on the Mechanical Properties of 6082 Aluminium Alloy, Open J. Appl. Sci. 11 (2021) 699–706. https://doi.org/10.4236/ojapps.2021.116051.
  • A.P. Hekimoğlu, Y.E. Turan, İ.İ. İsmailoğlu, M.E. Akyol, Effect of grain refinement with boron on the microstructure and mechanical properties of Al-30Zn alloy Bor ile yapılan tane inceltmenin Al-30Zn alaşımının mikroyapı ve mekanik özelliklerine etkisi Effect of grain refinement with boron on the microstructur, 1 (2019) 523–534. https://doi.org/10.17341/gazimmfd.416512.
  • M. Easton, D. StJohn, An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles, Metall. Mater. Trans. A. 36 (2005) 1911–1920. https://doi.org/10.1007/s11661-005-0054-y.
  • A.B. Pattnaik, S. Das, B.B. Jha, N. Prasanth, Effect of Al–5Ti–1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al5052 aluminium alloy, J. Mater. Res. Technol. 4 (2015) 171–179. https://doi.org/https://doi.org/10.1016/j.jmrt.2014.10.017.
  • K. Kaneko, T. Hata, T. Tokunaga, Z. Horita, Fabrication and Characterization of Supersaturated Al-Mg Alloys by Severe Plastic Deformation and Their Mechanical Properties, Mater. Trans. 50 (2009) 76–81. https://doi.org/10.2320/matertrans.MD200813.
  • B.-R. Jin, D.-W. Ha, C.-Y. Jeong, Effect of Solution Treatment on the Hardness and Tensile Properties of Al–Mg–Si Alloys for Automotive Chassis, Mater. Trans. 60 (2019) 815–823. https://doi.org/10.2320/matertrans.M2018368.
  • E. Hornbogen, Hundred years of precipitation hardening, J. Light Met. 1 (2001) 127–132. https://doi.org/https://doi.org/10.1016/S1471-5317(01)00006-2.
  • X. Xie, J. Shen, L. Cheng, Y. Li, Y. Pu, Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints, Mater. Des. 81 (2015) 31–38. https://doi.org/https://doi.org/10.1016/j.matdes.2015.05.024.
  • J. Deng, J. Shen, H. Li, H. Chen, F. Xie, Investigation on microstructure, mechanical properties and corrosion behavior of Sc-contained Al-7075 alloys after solution-Aging treatment, Mater. Res. Express. 7 (2020). https://doi.org/10.1088/2053-1591/abb4fa.
  • S.M. Mohammed, S.M. Mahdi, Corrosion behavior of aluminum alloys 2024 and 6061 in rainwater, J. Phys. Conf. Ser. 1973 (2021) 39–48. https://doi.org/10.1088/1742-6596/1973/1/012085.
  • R.P. Wei, C.-M. Liao, M. Gao, A transmission electron microscopy study of constituent-particle-induced corrosion in 7075-T6 and 2024-T3 aluminum alloys, Metall. Mater. Trans. A. 29 (1998) 1153–1160. https://doi.org/10.1007/s11661-998-0241-8.
  • P.S. Pao, C.R. Feng, S.J. Gill, Corrosion Fatigue Crack Initiation in Aluminum Alloys 7075 and 7050, Corrosion. 56 (2000) 1022–1031. https://doi.org/10.5006/1.3294379.
  • C.M. Liao, R.P. Wei, Galvanic coupling of model alloys to aluminum - a foundation for understanding particle-induced pitting in aluminum alloys, Electrochim. Acta. 45 (1999) 881–888. https://doi.org/10.1016/S0013-4686(99)00299-6.
  • Y. Wang, L. Cao, X. Wu, X. Tong, B. Liao, G. Huang, Z. Wang, Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085, J. Alloys Compd. 814 (2020) 152264. https://doi.org/https://doi.org/10.1016/j.jallcom.2019.152264.
  • X. Peng, Q. Guo, X. Liang, Y. Deng, Y. Gu, G. Xu, Z. Yin, Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy, Mater. Sci. Eng. A. 688 (2017) 146–154. https://doi.org/https://doi.org/10.1016/j.msea.2017.01.086.
  • S. Li, H. Dong, L. Shi, P. Li, F. Ye, Corrosion behavior and mechanical properties of Al-Zn-Mg aluminum alloy weld, Corros. Sci. 123 (2017) 243–255. https://doi.org/https://doi.org/10.1016/j.corsci.2017.05.007.
  • F. Song, X. Zhang, S. Liu, Q. Tan, D. Li, The effect of quench rate and overageing temper on the corrosion behaviour of AA7050, Corros. Sci. 78 (2014) 276–286. https://doi.org/https://doi.org/10.1016/j.corsci.2013.10.010.
  • K.D. Ralston, N. Birbilis, Effect of grain size on corrosion: A review, Corrosion. 66 (2010) 0750051–07500513. https://doi.org/10.5006/1.3462912.
  • P. Wang, L. Ma, X. Cheng, X. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater. 28 (2021) 1112–1126. https://doi.org/10.1007/s12613-021-2308-0.
  • K.D. Ralston, N. Birbilis, C.H.J. Davies, Revealing the relationship between grain size and corrosion rate of metals, Scr. Mater. 63 (2010) 1201–1204. https://doi.org/https://doi.org/10.1016/j.scriptamat.2010.08.035.
  • M. Sadawy, A. Mahdy, Effect of Grain Refiner Al–5Ti–1B on the Corrosion and Electrochemical Behavior of Al-6061 in 3.5wt. % NaCl Solution, Metall. (2013) 397–401.
  • F. Andreatta, H. Terryn, J.H.W. de Wit, Corrosion behaviour of different tempers of AA7075 aluminium alloy, Electrochim. Acta. 49 (2004) 2851–2862. https://doi.org/https://doi.org/10.1016/j.electacta.2004.01.046.

Al7075 Alaşımına İlave Edilen Al-5Ti-1B Tane İncelticinin Yaşlanma, Mikroyapı, Sertlik ve Korozif Özellikleri Üzerindeki Etkisi

Yıl 2022, Cilt: 10 Sayı: 4, 870 - 883, 30.12.2022
https://doi.org/10.29109/gujsc.1165103

Öz

Bu çalışmada, özellikle havacılık endüstrisi için kritik bir malzeme olan Al7075 alaşımına ağırlıkça %1 ve %2 oranında Al-5Ti-1B tane inceltici ilave edilerek 200 ℃’de 10 dakika, 1 saat, 2,5 saat, 5 saat ve 20 saat süre ile çökelme sertleşmesi ısıl işlemi uygulanmıştır. Tane inceltici ilave edilen ve edilmeyen tüm alaşımların mikroyapısal analizleri ile sertlik ve korozyon testleri gerçekleştirilmiştir. Elde edilen sonuçlardan alaşıma ilave edilen tane incelticinin alaşımın tane boyutunu ~%24 oranında azalttığı tespit edilmiştir. Bununla birlikte, tane inceltici ilave edilen alaşımların sertlik değerleri, çökelme sertleşmesi sonrası artış göstermiştir. Genel olarak tane inceltici ilave edilen alaşımların korozyon potansiyelleri, Al7075 alaşımına göre daha pozitif çıkmıştır. Benzer şekilde tane inceltici ilave edilen alaşımların korozyon akım yoğunluğu değerleri, Al7075 alaşımına göre daha düşük olarak ölçülmüştür.

Proje Numarası

2021-73338635-01

Kaynakça

  • T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, Mater. Des. 56 (2014) 862–871. https://doi.org/https://doi.org/10.1016/j.matdes.2013.12.002.
  • M.C. Reboul, B. Baroux, Metallurgical aspects of corrosion resistance of aluminium alloys, Mater. Corros. 62 (2011) 215–233. https://doi.org/https://doi.org/10.1002/maco.201005650.
  • J. HIRSCH, Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China. 24 (2014) 1995–2002. https://doi.org/https://doi.org/10.1016/S1003-6326(14)63305-7.
  • P. Rambabu, N. Eswara Prasad, V. V Kutumbarao, R.J.H. Wanhill, Aluminium Alloys for Aerospace Applications BT - Aerospace Materials and Material Technologies : Volume 1: Aerospace Materials, in: N.E. Prasad, R.J.H. Wanhill (Eds.), Springer Singapore, Singapore, 2017: pp. 29–52. https://doi.org/10.1007/978-981-10-2134-3_2.
  • M.A. Wahid, A.N. Siddiquee, Z.A. Khan, Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint, Mar. Syst. Ocean Technol. 15 (2020) 70–80. https://doi.org/10.1007/s40868-019-00069-w.
  • D.S. MacKenzie, Metallurgy of Heat Treatable Aluminum Alloys, Heat Treat. Nonferrous Alloy. 4E (2016) 0. https://doi.org/10.31399/asm.hb.v04e.a0006287.
  • L. Hua, X. Hu, X. Han, Microstructure evolution of annealed 7075 aluminum alloy and its influence on room-temperature plasticity, Mater. Des. 196 (2020) 109192. https://doi.org/https://doi.org/10.1016/j.matdes.2020.109192.
  • A.D. Isadare, B. Aremo, M.O. Adeoye, O.J. Olawale, M.D. Shittu, Effect of heat treatment on some mechanical properties of 7075 aluminium alloy, Mater. Res. 16 (2013) 190–194. https://doi.org/10.1590/S1516-14392012005000167.
  • M.N. Ervina Efzan, H.J. Kong, C.K. Kok, Review: Effect of Alloying Element on Al-Si Alloys, Adv. Mater. Res. 845 (2014) 355–359. https://doi.org/10.4028/www.scientific.net/AMR.845.355.
  • H.C. Fang, H. Chao, K.H. Chen, Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn–Mg–Cu alloys, Mater. Sci. Eng. A. 610 (2014) 10–16. https://doi.org/https://doi.org/10.1016/j.msea.2014.05.021.
  • K. Chen, H. Liu, Z. Zhang, S. Li, R.I. Todd, The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments, J. Mater. Process. Technol. 142 (2003) 190–196. https://doi.org/https://doi.org/10.1016/S0924-0136(03)00597-1.
  • M. Çolak, A. İbrahim, Investigation of Wear Properties of Grain Refined and Modified A319 Aluminum Alloy Produced with Sand and Permanent Mold, 7 (2018) 134–137.
  • M. Çolak, R. Kayıkcı, Alüminyum Dökümlerinde Tane İnceltme, SAÜ Fen Bilim. Enstitüsü Derg. 13 (2009) 11–17.
  • İ. Arslan, E. GAVGALI, M. ÇOLAK, Kum Kalıba Dökülen Farklı Alüminyum Alaşımlarının Dökümünde Al5Ti1B ve AL10SR İlavesinin Mikroyapı Özelliklere Etkisinin İncelenmesi, Acad. Platf. J. Eng. Sci. 7 (2019) 237–244. https://doi.org/10.21541/apjes.424920.
  • K.T. Kashyap, T. Chandrashekar, Effects and mechanisms of grain refinement in aluminium alloys, Bull. Mater. Sci. 24 (2001) 345–353. https://doi.org/10.1007/BF02708630.
  • M. Baruah, A. Borah, Processing and precipitation strengthening of 6xxx series aluminium alloys: A review, Int. J. Mater. Sci. 1 (2020) 40–48. https://doi.org/10.22271/27078221.2020.v1.i1a.10.
  • G. Sha, K. O’Reilly, B. Cantor, R. Hamerton, J. Worth, Effect of Grain Refiner on Intermetallic Phase Formation in Directional Solidification of 6xxx Series Wrought Al Alloys, Mater. Sci. Forum. 331–337 (2000) 253–258. https://doi.org/10.4028/www.scientific.net/MSF.331-337.253.
  • A. Lui, P.S. Grant, I.C. Stone, K.A.Q. O’Reilly, The Role of Grain Refiner in the Nucleation of AlFeSi Intermetallic Phases During Solidification of a 6xxx Aluminum Alloy, Metall. Mater. Trans. A. 50 (2019) 5242–5252. https://doi.org/10.1007/s11661-019-05447-y.
  • G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys, Int. J. Met. 1 (2007) 31–40. https://doi.org/10.1361/asmhba0005302.
  • T. Li, S.C. Wang, K.H. Zheng, Effect of Al-5Ti-1B grain refiner on microstructure and mechanical properties of 7075 aluminum alloy, Mater. Sci. Forum. 817 (2015) 331–336. https://doi.org/10.4028/www.scientific.net/MSF.817.331.
  • D. Izcankurtaran, B. Tunca, G. Karatay, Investigation of the Effect of Grain Refinement on the Mechanical Properties of 6082 Aluminium Alloy, Open J. Appl. Sci. 11 (2021) 699–706. https://doi.org/10.4236/ojapps.2021.116051.
  • A.P. Hekimoğlu, Y.E. Turan, İ.İ. İsmailoğlu, M.E. Akyol, Effect of grain refinement with boron on the microstructure and mechanical properties of Al-30Zn alloy Bor ile yapılan tane inceltmenin Al-30Zn alaşımının mikroyapı ve mekanik özelliklerine etkisi Effect of grain refinement with boron on the microstructur, 1 (2019) 523–534. https://doi.org/10.17341/gazimmfd.416512.
  • M. Easton, D. StJohn, An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles, Metall. Mater. Trans. A. 36 (2005) 1911–1920. https://doi.org/10.1007/s11661-005-0054-y.
  • A.B. Pattnaik, S. Das, B.B. Jha, N. Prasanth, Effect of Al–5Ti–1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al5052 aluminium alloy, J. Mater. Res. Technol. 4 (2015) 171–179. https://doi.org/https://doi.org/10.1016/j.jmrt.2014.10.017.
  • K. Kaneko, T. Hata, T. Tokunaga, Z. Horita, Fabrication and Characterization of Supersaturated Al-Mg Alloys by Severe Plastic Deformation and Their Mechanical Properties, Mater. Trans. 50 (2009) 76–81. https://doi.org/10.2320/matertrans.MD200813.
  • B.-R. Jin, D.-W. Ha, C.-Y. Jeong, Effect of Solution Treatment on the Hardness and Tensile Properties of Al–Mg–Si Alloys for Automotive Chassis, Mater. Trans. 60 (2019) 815–823. https://doi.org/10.2320/matertrans.M2018368.
  • E. Hornbogen, Hundred years of precipitation hardening, J. Light Met. 1 (2001) 127–132. https://doi.org/https://doi.org/10.1016/S1471-5317(01)00006-2.
  • X. Xie, J. Shen, L. Cheng, Y. Li, Y. Pu, Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints, Mater. Des. 81 (2015) 31–38. https://doi.org/https://doi.org/10.1016/j.matdes.2015.05.024.
  • J. Deng, J. Shen, H. Li, H. Chen, F. Xie, Investigation on microstructure, mechanical properties and corrosion behavior of Sc-contained Al-7075 alloys after solution-Aging treatment, Mater. Res. Express. 7 (2020). https://doi.org/10.1088/2053-1591/abb4fa.
  • S.M. Mohammed, S.M. Mahdi, Corrosion behavior of aluminum alloys 2024 and 6061 in rainwater, J. Phys. Conf. Ser. 1973 (2021) 39–48. https://doi.org/10.1088/1742-6596/1973/1/012085.
  • R.P. Wei, C.-M. Liao, M. Gao, A transmission electron microscopy study of constituent-particle-induced corrosion in 7075-T6 and 2024-T3 aluminum alloys, Metall. Mater. Trans. A. 29 (1998) 1153–1160. https://doi.org/10.1007/s11661-998-0241-8.
  • P.S. Pao, C.R. Feng, S.J. Gill, Corrosion Fatigue Crack Initiation in Aluminum Alloys 7075 and 7050, Corrosion. 56 (2000) 1022–1031. https://doi.org/10.5006/1.3294379.
  • C.M. Liao, R.P. Wei, Galvanic coupling of model alloys to aluminum - a foundation for understanding particle-induced pitting in aluminum alloys, Electrochim. Acta. 45 (1999) 881–888. https://doi.org/10.1016/S0013-4686(99)00299-6.
  • Y. Wang, L. Cao, X. Wu, X. Tong, B. Liao, G. Huang, Z. Wang, Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085, J. Alloys Compd. 814 (2020) 152264. https://doi.org/https://doi.org/10.1016/j.jallcom.2019.152264.
  • X. Peng, Q. Guo, X. Liang, Y. Deng, Y. Gu, G. Xu, Z. Yin, Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy, Mater. Sci. Eng. A. 688 (2017) 146–154. https://doi.org/https://doi.org/10.1016/j.msea.2017.01.086.
  • S. Li, H. Dong, L. Shi, P. Li, F. Ye, Corrosion behavior and mechanical properties of Al-Zn-Mg aluminum alloy weld, Corros. Sci. 123 (2017) 243–255. https://doi.org/https://doi.org/10.1016/j.corsci.2017.05.007.
  • F. Song, X. Zhang, S. Liu, Q. Tan, D. Li, The effect of quench rate and overageing temper on the corrosion behaviour of AA7050, Corros. Sci. 78 (2014) 276–286. https://doi.org/https://doi.org/10.1016/j.corsci.2013.10.010.
  • K.D. Ralston, N. Birbilis, Effect of grain size on corrosion: A review, Corrosion. 66 (2010) 0750051–07500513. https://doi.org/10.5006/1.3462912.
  • P. Wang, L. Ma, X. Cheng, X. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater. 28 (2021) 1112–1126. https://doi.org/10.1007/s12613-021-2308-0.
  • K.D. Ralston, N. Birbilis, C.H.J. Davies, Revealing the relationship between grain size and corrosion rate of metals, Scr. Mater. 63 (2010) 1201–1204. https://doi.org/https://doi.org/10.1016/j.scriptamat.2010.08.035.
  • M. Sadawy, A. Mahdy, Effect of Grain Refiner Al–5Ti–1B on the Corrosion and Electrochemical Behavior of Al-6061 in 3.5wt. % NaCl Solution, Metall. (2013) 397–401.
  • F. Andreatta, H. Terryn, J.H.W. de Wit, Corrosion behaviour of different tempers of AA7075 aluminium alloy, Electrochim. Acta. 49 (2004) 2851–2862. https://doi.org/https://doi.org/10.1016/j.electacta.2004.01.046.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Mete Berke Yaman 0000-0002-1645-5718

Engin Kocaman 0000-0001-5617-3064

Barış Avar 0000-0002-6234-5448

Proje Numarası 2021-73338635-01
Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 22 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 4

Kaynak Göster

APA Yaman, M. B., Kocaman, E., & Avar, B. (2022). Al7075 Alaşımına İlave Edilen Al-5Ti-1B Tane İncelticinin Yaşlanma, Mikroyapı, Sertlik ve Korozif Özellikleri Üzerindeki Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 10(4), 870-883. https://doi.org/10.29109/gujsc.1165103

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526