BibTex RIS Kaynak Göster

-

Yıl 2015, Cilt: 3 Sayı: 1, 401 - 406, 10.02.2015

Öz

In this study, hydroxyapatite (HAP) was prepared by using the co-precipitation method and used as a catalyst support material. 25 % KOH loaded HAP catalyst was prepared by wet-impregnation method and basicity of synthesized catalyst was found to be 1.6 mmol/g. Synthesized solid basic catalyst was tested for the soybean oil transesterification with methanol at different reaction temperatures (25-65°C) and different alcohol/oil molar ratios (6/1-15/1) when catalyst amount of 3 wt.% and reaction time of 5 h were kept constant. The chemical structure and purity of the fatty acid methyl esters obtained in this study was verified by the ATR-IR spectroscopy method. Methyl ester yield of 93.3% was obtained by using KOH loaded HAP solid basic catalyst which was found to be very successful catalyst

Kaynakça

  • 1. Van Gerpen, J., “Biodiesel processing and production”, Fuel Processing Technology, Cilt 86, 1097–1107, 2005.
  • 2. Canakci, M., Van Gerpen, J., “Biodiesel production via acid catalysis”, Transactions of the ASAE, Cilt 42, 1203-1210, 1999.
  • 3. Alcantara, R., Amores, J., Canoria, L., Fidalgo, E., Franco, M.J., Navarro, A., “Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow”, Biomass and Bioenergy, Cilt 18, No 6, 515–527, 2000.
  • 4. Du, W., Xu, Y., Zeng, J., Liu, D., “Novozym 435- catalysed transesterification of crude soya bean oils for biodiesel production in a solvent-free medium”, Biotechnology and Applied Biochemistry, Cilt 40, No 2, 187–190, 2004.
  • 5. Marchetti, J.M., Miguel V.U., Errazu A.F., “Possible methods for biodiesel production”, Renewable and Sustainable Energy Reviews, Cilt 11, No 6, 1300- 1311, 2007.
  • 6. Go, A.W., Sutanto, S., Nguyenthi, B.T., Cabatingan, L.K., Ismadji, S., Ju, Y., “Transesterification of soybean oil with methanol and acetic acid at lower reaction severity under subcritical conditions”, Energy Conversion and Management, Cilt 88, 1159-1166, 2014.
  • 7. Souzo, S.P., Seabra, J.E.A., “Integrated production of sugarcane ethanol ve soybean biodiesel: Environmental and economic implications of fossil diesel displacement”, Energy Conversion and Management, Cilt 87, 1170-1179, 2014.
  • 8. Xie, W., Huang, X., Li, H., “Soybean oil methyl esterss preparation using NaX zeolites loaded with KOH as a heterogenous catalyst”, Bioresource Technology, Cilt 98, 936-939, 2007.
  • 9. Xie, W., Huang, X., “Synthesis of Biodiesel from Soybean Oil using Heterogeneous KF/ZnO Catalyst”, Catalysis Letters, Cilt 107, No 1-2, 53-59, 2006.
  • 10. Liu, X., He, H., Wang, Y., Zhu, S., Piao, X., “Transesterification of Soybean Oil to Biodiesel using CaO as a Solid Base Catalyst”, Fuel, Cilt 87, No 2, 216-222, 2008.
  • 11. Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka, S., Hidaka, J., “Calcium Oxide as a Solid Base Catalyst for Transesterification of Soybean Oil and its Application to Biodiesel Production”, Fuel, Cilt 87, 2798–2806, 2008.
  • 12. Dossin, T.F., Reyniers, M.F., Berger, R.J., Marin, G.B., “Heterogeneously MgO-Catalyzed Transesterification for Fine-chemical and Biodiesel Industrial Production”, Applied Catalysis B: Environmental, Cilt 67, 136–148, 2006.
  • 13. Liu, X., He, H., Wang, Y., Zhu, S., “Transesterification of Soybean Oil to Biodiesel Using SrO as a Solid Base Catalyst”, Catalysis Communications, Cilt 8, 1107–1111, 2007.
  • 14. Xie, W., Peng, H., Chen, L., “Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil”, Journal of Molecular Catalysis A: Chemical, Cilt 246, 24-32, 2005.
  • 15. Xie, W., Peng, H., Chen, L., “Transesterification of soybean oil catalyzed by potassium loaded on alümina as a solid-base catalyst”, Applied Catalysis A: General, Cilt 300, 67-74, 2006.
  • 16. Değirmenbaşı, N., Kalyon, D.M., Birinci, E., “Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol)”, Colloids and Surfaces B: Biointerfaces, Cilt 48, 42–49, 2006.
  • 17. Mori, K., Yamaguchi, K., Hara, T., Mizugaki, T., Ebiani, K., Kaneda,K., “Controlled Synthesis of Hydroxyapatite-supported Palladium Complexes as Highly Efficient Heterogeneous Catalysts”, Journal of the American Chemical Society, Cilt 124, No 39, 11572-11573, 2002.
  • 18. Bai, R., Wang, S., Mei, F., Li, T., Li, G., “Synthesis of Glycerol Carbonate from Glycerol and Dimethyl Carbonate Catalyzed by KF Modified Hydroxyapatite”, Journal of Industrial and Engineering Chemistry, Cilt 17, No 4, 777-781, 2011. 19. European Standard of TS-EN 14103, ‘Fat and oil derivatives-Fatty Acid Methyl Esters (FAME) - Determination of ester and linolenic acid methyl ester contents’, April 2003.
  • 20. Boz, N., Değirmenbaşı, N., Kalyon, D.M., “Conversion of Biomass to Fuel: Transesterification of Vegetable Oil to Biodiesel using KF Loaded Nano-γ-Al2O3
  • as Catalyst”, Applied Catalysis B: Environmental, Cilt 89, 590-596, 2009.
  • 21. Boz, N., Değirmenbaşı, N., Kalyon, D.M., “Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds”, Applied Catalysis B: Environmental, Cilt 138-139, 236-242, 2013.
  • 22. Degirmenbasi, N., Boz, N., Kalyon, D.M., “Biofuel Production via Transesterification using Sepiolitesupported Alkaline Catalysts, Applied Catalysis BEnvironmental, Cilt 150-151, 147-156, 2014.
  • 23. Knothe, G., Kenar J.A., “Determination of the Fatty Acid Profile by 1H-NMR Spectroscopy”, European Journal of Lipid Science and Technology, Cilt 106, No 2, 88-96, 2004.
  • 24. Linck, Y.G., Killner, M.N.M., Danieli, E., Blümich, B., “Mobile Low-Field 1H-NMR Spectroscopy Desktop Analysis of Biodiesel Production”, Applied Magnetic Resonance, Cilt 44, No 1-2, 41- 53, 2013.

SOYA YAĞI METİL ESTERLERİN ÜRETİMİ İÇİN BAZİK HETEROJEN KATALİZÖR TASARIMI

Yıl 2015, Cilt: 3 Sayı: 1, 401 - 406, 10.02.2015

Öz

Bu çalışmada, hidroksiapatit (HAP) katalizör destek malzemesi olarak birlikte çöktürme yöntemine göre hazırlandı. %25 potasyum hidroksit (KOH) HAP destek malzemesine ıslak emdirme yöntemi ile yüklenerek yapının bazikliği 1,6 mmol/g olarak bulundu. Elde edilen katı bazik katalizör soya yağının metanol ile transesterleşme tepkimesinden biyodizel (yağ asidi metil esterleri) üretimi için farklı sıcaklık aralığında (25-65°C) ve farklı alkol/yağ oranında (6/1-15/1) kütlece %3 katalizör miktarında 5 saat süre ile test edildi. Elde edilen soya yağ asidi metil esterlerinin saflığı ve yapısı ATR-IR spektroskopisi doğrulandı. KOH yüklenen HAP bazik katı katalizörü soya yağının transesterleşme tepkimesinde %93,3 metil ester verimi vererek oldukça başarılı bulundu.

Kaynakça

  • 1. Van Gerpen, J., “Biodiesel processing and production”, Fuel Processing Technology, Cilt 86, 1097–1107, 2005.
  • 2. Canakci, M., Van Gerpen, J., “Biodiesel production via acid catalysis”, Transactions of the ASAE, Cilt 42, 1203-1210, 1999.
  • 3. Alcantara, R., Amores, J., Canoria, L., Fidalgo, E., Franco, M.J., Navarro, A., “Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow”, Biomass and Bioenergy, Cilt 18, No 6, 515–527, 2000.
  • 4. Du, W., Xu, Y., Zeng, J., Liu, D., “Novozym 435- catalysed transesterification of crude soya bean oils for biodiesel production in a solvent-free medium”, Biotechnology and Applied Biochemistry, Cilt 40, No 2, 187–190, 2004.
  • 5. Marchetti, J.M., Miguel V.U., Errazu A.F., “Possible methods for biodiesel production”, Renewable and Sustainable Energy Reviews, Cilt 11, No 6, 1300- 1311, 2007.
  • 6. Go, A.W., Sutanto, S., Nguyenthi, B.T., Cabatingan, L.K., Ismadji, S., Ju, Y., “Transesterification of soybean oil with methanol and acetic acid at lower reaction severity under subcritical conditions”, Energy Conversion and Management, Cilt 88, 1159-1166, 2014.
  • 7. Souzo, S.P., Seabra, J.E.A., “Integrated production of sugarcane ethanol ve soybean biodiesel: Environmental and economic implications of fossil diesel displacement”, Energy Conversion and Management, Cilt 87, 1170-1179, 2014.
  • 8. Xie, W., Huang, X., Li, H., “Soybean oil methyl esterss preparation using NaX zeolites loaded with KOH as a heterogenous catalyst”, Bioresource Technology, Cilt 98, 936-939, 2007.
  • 9. Xie, W., Huang, X., “Synthesis of Biodiesel from Soybean Oil using Heterogeneous KF/ZnO Catalyst”, Catalysis Letters, Cilt 107, No 1-2, 53-59, 2006.
  • 10. Liu, X., He, H., Wang, Y., Zhu, S., Piao, X., “Transesterification of Soybean Oil to Biodiesel using CaO as a Solid Base Catalyst”, Fuel, Cilt 87, No 2, 216-222, 2008.
  • 11. Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka, S., Hidaka, J., “Calcium Oxide as a Solid Base Catalyst for Transesterification of Soybean Oil and its Application to Biodiesel Production”, Fuel, Cilt 87, 2798–2806, 2008.
  • 12. Dossin, T.F., Reyniers, M.F., Berger, R.J., Marin, G.B., “Heterogeneously MgO-Catalyzed Transesterification for Fine-chemical and Biodiesel Industrial Production”, Applied Catalysis B: Environmental, Cilt 67, 136–148, 2006.
  • 13. Liu, X., He, H., Wang, Y., Zhu, S., “Transesterification of Soybean Oil to Biodiesel Using SrO as a Solid Base Catalyst”, Catalysis Communications, Cilt 8, 1107–1111, 2007.
  • 14. Xie, W., Peng, H., Chen, L., “Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil”, Journal of Molecular Catalysis A: Chemical, Cilt 246, 24-32, 2005.
  • 15. Xie, W., Peng, H., Chen, L., “Transesterification of soybean oil catalyzed by potassium loaded on alümina as a solid-base catalyst”, Applied Catalysis A: General, Cilt 300, 67-74, 2006.
  • 16. Değirmenbaşı, N., Kalyon, D.M., Birinci, E., “Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol)”, Colloids and Surfaces B: Biointerfaces, Cilt 48, 42–49, 2006.
  • 17. Mori, K., Yamaguchi, K., Hara, T., Mizugaki, T., Ebiani, K., Kaneda,K., “Controlled Synthesis of Hydroxyapatite-supported Palladium Complexes as Highly Efficient Heterogeneous Catalysts”, Journal of the American Chemical Society, Cilt 124, No 39, 11572-11573, 2002.
  • 18. Bai, R., Wang, S., Mei, F., Li, T., Li, G., “Synthesis of Glycerol Carbonate from Glycerol and Dimethyl Carbonate Catalyzed by KF Modified Hydroxyapatite”, Journal of Industrial and Engineering Chemistry, Cilt 17, No 4, 777-781, 2011. 19. European Standard of TS-EN 14103, ‘Fat and oil derivatives-Fatty Acid Methyl Esters (FAME) - Determination of ester and linolenic acid methyl ester contents’, April 2003.
  • 20. Boz, N., Değirmenbaşı, N., Kalyon, D.M., “Conversion of Biomass to Fuel: Transesterification of Vegetable Oil to Biodiesel using KF Loaded Nano-γ-Al2O3
  • as Catalyst”, Applied Catalysis B: Environmental, Cilt 89, 590-596, 2009.
  • 21. Boz, N., Değirmenbaşı, N., Kalyon, D.M., “Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds”, Applied Catalysis B: Environmental, Cilt 138-139, 236-242, 2013.
  • 22. Degirmenbasi, N., Boz, N., Kalyon, D.M., “Biofuel Production via Transesterification using Sepiolitesupported Alkaline Catalysts, Applied Catalysis BEnvironmental, Cilt 150-151, 147-156, 2014.
  • 23. Knothe, G., Kenar J.A., “Determination of the Fatty Acid Profile by 1H-NMR Spectroscopy”, European Journal of Lipid Science and Technology, Cilt 106, No 2, 88-96, 2004.
  • 24. Linck, Y.G., Killner, M.N.M., Danieli, E., Blümich, B., “Mobile Low-Field 1H-NMR Spectroscopy Desktop Analysis of Biodiesel Production”, Applied Magnetic Resonance, Cilt 44, No 1-2, 41- 53, 2013.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Tasarım ve Teknoloji
Yazarlar

Nebahat Değirmenbaşı

Nezahat Boz

Yayımlanma Tarihi 10 Şubat 2015
Gönderilme Tarihi 10 Şubat 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 3 Sayı: 1

Kaynak Göster

APA Değirmenbaşı, N., & Boz, N. (2015). SOYA YAĞI METİL ESTERLERİN ÜRETİMİ İÇİN BAZİK HETEROJEN KATALİZÖR TASARIMI. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 3(1), 401-406.

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526