Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Yoğunluklu Polietin (YYPE)/Çinko Borat Polimer Kompozitinin Mekanik Özelliklerine Grafenin Etkisi

Yıl 2023, Cilt: 11 Sayı: 1, 133 - 142, 25.03.2023
https://doi.org/10.29109/gujsc.1237516

Öz

Bu çalışmada; yüksek yoğunluklu polietilen (YYPE) içerisine %5 oranında çinko borat ve farklı oranlarda grafen tozları katılarak bir kompozit üretilmiştir. Kompoziti oluşturan malzemeler çift vidalı ekstrüzyon makinesinde karıştırılarak beş farklı grup elde edilmiştir ve enjeksiyon makinası kullanılarak standart test numuneleri üretilmiştir. Mekanik değerleri belirlemek için çekme, sertlik ve darbe testleri yapılmıştır. Ayrıca çinko borat ve grafenin dağılımlarını belirlemek için taramalı elektron mikroskobisi (SEM) ile fotoğrafları çekilmiştir. Analizler sonucunda YYPE içerisinde çinko borat ve grafen toz ilavesiyle; elastiklik modülü, çekme mukavemeti, kopma mukavemeti ve sertlik değerlerinin arttığı diğer taraftan darbe mukavemeti kopma uzaması ve kopma uzaması değerlerinin ise düştüğü tespit edilmiştir. SEM inceleme sonucu çinko borat ve grafen tozlarının homojen dağıldığı tespit edilmiştir.

Kaynakça

  • [1] Kaştan A., Yalçın Y., Talaş Ş., Nano katkıların polimerlerin sürtünme katsayısına etkisi, Afyon Kocatepe Üniversitesi Fen ve Müh. Bilimleri Dergisi, 16 (2016) 231-243.
  • [2] Das TK., Prusty S., Graphene-Based Polymer composites and their applications, Polymer-Plastics Technology and Engineering, 52 (2013) 319-331.
  • [3] Kovtyukhova NI., Ollivier PJ., Martin BR., Mallouk TE., Chizhik SA., Buzaneza EV., Gorchinskiy AD., Layer-by-layer assembly of ultrathin composite films, Chemistry of Materials, 11 (1999) 771-778.
  • [4] Lerf A., He H., Forster M., Klinowski J., Structure of graphite oxide, The Journal of Physical Chemistry B, 102 (1998) 4477- 4482.
  • [5] Zou L., Wang L., Wu Y., Ma C., Yu S., Liu X., Trends analysis of graphene research and development, Journal of Data and Information Science, 3 (2018) 82-100.
  • [6] Kuila T., Bose S., Mishra AK., Khanra P., Kim NH., Lee JH., Chemical functionalization of graphene and its applications, Progress in Materials Science, 57 (2012) 1061-1105.
  • [7] Ren Z., Lan Y., Wang Y., Aligned Carbon Nanotubes, Nano Science and Technology, Springer-Verlag Berlin Heidelberg, Chapter 1: Introduction to Carbon (2013).
  • [8] Istrate OM., Paton KR., Khan U., O’Neill A., Bell AP., Coleman JN., Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon, 78 (2014) 243–249.
  • [9] El Achaby M., Arrakhiz FE., Vaudreuil S., El Kacem Qaiss A., Bousmina M., Fassi-Fehri O., Mechanical, thermal, and rheological properties of graphene based polypropylene nanocomposites prepared by melt mixing, Polymer Composites, 33 No.5 (2012) 733–744.
  • [10] Yan D., Zhang HB., Jia Y., Hu J., Qi XY., Zhang Z., Improved electrical conductivity of polyamide 12/graphene nanocomposites with maleated polyethylene-octane rubber prepared by melt compounding, ACS Applied Materials Interfaces, 4 No.9 (2012) 4740–4745.
  • [11] Vasileiou AA., Kontopoulou M., Docoslis A., A noncovalent compatibilization approach to improve the filler dispersion and properties of polyethylene/graphene composites, ACS Applied Materials Interfaces, 6 No.3 (2014) 1916–1925. Elif ULUTAŞ, Beril EKER GÜMÜŞ, Münir TAŞDEMİR / GU J Sci, Part C, 11(1):133-142(2023) 141 [12] Maio A., Fucarino R., Khatibi R., Rosselli S., Bruno M., Scaffaro R., A novel approach to prevent graphene oxide re-aggregation during the melt compounding with polymers, Composite Science Technology, 119 (2015) 131–137.
  • [13] Chatterjee S., Nüesch F., Chu B., Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers, Chemical Physics Letters, 557 (2013) 92–96.
  • [14] Araby S., Zaman I., Meng Q., Kawashima N., Michelmore A., Kuan HC., Melt compounding with graphene to develop functional, high-performance elastomers, Nanotechnology, 24 No.16 (2013) 165601.
  • [15] Mahmoud WE., Morphology and physical properties of poly (ethylene oxide) loaded graphene nanocomposites prepared by two different techniques, European Polymer Journal, 47 No.8 (2011) 1534–1540.
  • [16] Vallés C., Abdelkader AM., Young RJ., Kinloch IA., Few layer graphene–polypropylene nanocomposites: the role of flake diameter, Faraday Discuss, 173 (2014) 379–390.
  • [17] Vallés C., Kinloch IA., Young RJ., Wilson NR., Rourke JP., Graphene oxide and base-washed graphene oxide as reinforcements in PMMA nanocomposites, Composite Science Technology, 88 (2013) 158–164.
  • [18] Zhang HB., Zheng WG., Yan Q., Yang Y., Wang JW., Lu ZH., Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding, Polymer,51 No.5 (2010) 1191–1196.
  • [19] Bao C., Song L., Xing W., Yuan B., Wilkie CA., Huang J., Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending, Journal of Materials Chemistry, 22 No.13 (2012) 6088–6096.
  • [20] El Achaby M., Arrakhiz F., Vaudreuil S., Essassi E., Qaiss A., Bousmina M., Preparation and characterization of melt-blended graphene nanosheets–poly (vinylidene fluoride) nanocomposites with enhanced properties, Journal of Applied Polymer Science, 127 No.6 (2013) 4697–4707.
  • [21] Kim H., Macosko CW., Processing-property relationships of polycarbonate/graphene composites, Polymer, 50 No.15 (2009) 3797–3809.
  • [22] Jiang X., Drzal LT., Improving electrical conductivity and mechanical properties of high density polyethylene through incorporation of paraffin wax coated exfoliated graphene nanoplatelets and multi-wall carbon nano-tubes, Composites A, 42 No.11 (2011) 1840–1849.
  • [23] Tambrallimath V., Keshavamurthy R., Bavan SD., Patil AY., Khan TMY., Badruddin IA., Kamangar S., Mechanical properties of PC-ABS-based graphene-reinforced polymer nanocomposites fabricated by FDM process, Polymers, 13 No.17 (2021) 2951.
  • [24] Okan BS., Fabrication of multilayer graphene oxide-reinforced high density polyethylene nanocomposites with enhanced thermal and mechanical properties via thermokinetic mixing, Turkish Journal of Chemistry, 4 (2017) 381 – 390.
  • [25] Wang J., Song F., Ding Y., Shao M., The incorporation of graphene to enhance mechanical properties of polypropylene self-reinforced polymer composites, Materials and Design, 195 (2020) 109073.
  • [26] Alghamdi AS., Synthesis and mechanical characterization of high density polyethylene/graphene nanocomposites, Engineering, Technology & Applied Science Research, 8 No.2 (2018) 2814-2817.
  • [27] Kim H, Abdala AA., Macosko, CW., Graphene/polymer nanocomposites. Macromolecules, 43, (2010), 6515-6530. 142 Elif ULUTAŞ, Beril EKER GÜMÜŞ, Münir TAŞDEMİR / GU J Sci, Part C, 11(1):133-142(2023) [28] Liang J., Huang Y., Zhang L., Wang Y., Ma Y., Guo T., Chen Y., Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites, Advanced Functional Materials 19, (2009) 2297-2302.
  • [29] Paul DR., Robeson, LM., Polymer nanotechnology: Nanocomposites. Polymer 49, (2008) 3187-3204.
  • [30] Shen B., Zhai W., Tao M., Lu D., Zheng W., Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites. Composites Science and Technology 77, (2013) 87-94.
  • [31] Wang Y., Shi Z.X., Yin J., Kevlar oligomer functionalized graphene for polymer composites. Polymer 52, (2011) 3661-3670.
  • [32] Schadler LS., Giannaris SC., Ajayan PM., Load transfer in carbon nanotube epoxy composites, Applied Physics Letters 73, (1998) 3842-3844.
  • [33] Papageorgiou DG., Kinloch IA., Young RJ., Mechanical properties of graphene and graphene-besed nanocomposites, Progress in Materials Science, 90 (2017), 75-127.
  • [34] Bhusari SA., Sharma V., Bose S., Basu B., HDPE/UHMWPE hybrid nanocomposites with surface functionalized graphene oxide towards improved strength and cytocompatibility, J.R.Soc. Interface 16 (2019) 1-16.
  • [35] Altay L., Atagür M., Erbektaş M., Sarıkanat M., Grafit nanoplaka takviyeli ultra yüksek molekül ağırlıklı polietilen tabanlı nano-kompozit malzeme geliştirilmesi ve karakterizasyonu, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Müh. Dergisi, 21 No.62 (2019) 323-330.

The Effect of Graphene on the Mechanical Properties of High Density Polyethylene (HDPE)/Zinc Borate Polymer Composite

Yıl 2023, Cilt: 11 Sayı: 1, 133 - 142, 25.03.2023
https://doi.org/10.29109/gujsc.1237516

Öz

In this study; A composite was produced by adding 5% zinc borate and different amounts of graphene powders into high density polyethylene (HDPE). Five different groups were obtained by mixing the materials forming the composite in a twin screw extruder and standard test samples were produced using an injection machine. Tensile, hardness and impact tests were performed to determine the mechanical values. In addition, photographs were taken with scanning electron microscopy (SEM) to determine the distributions of zinc borate and graphene. As a result of the analysis, with the addition of zinc borate and graphene powder in HDPE; It was determined that the modulus of elasticity, tensile strength, breaking strength and hardness values increased, while the values of impact strength, elongation at break and elongation at break decreased. As a result of SEM examination, it was determined that zinc borate and graphene powders were homogeneously dispersed.

Kaynakça

  • [1] Kaştan A., Yalçın Y., Talaş Ş., Nano katkıların polimerlerin sürtünme katsayısına etkisi, Afyon Kocatepe Üniversitesi Fen ve Müh. Bilimleri Dergisi, 16 (2016) 231-243.
  • [2] Das TK., Prusty S., Graphene-Based Polymer composites and their applications, Polymer-Plastics Technology and Engineering, 52 (2013) 319-331.
  • [3] Kovtyukhova NI., Ollivier PJ., Martin BR., Mallouk TE., Chizhik SA., Buzaneza EV., Gorchinskiy AD., Layer-by-layer assembly of ultrathin composite films, Chemistry of Materials, 11 (1999) 771-778.
  • [4] Lerf A., He H., Forster M., Klinowski J., Structure of graphite oxide, The Journal of Physical Chemistry B, 102 (1998) 4477- 4482.
  • [5] Zou L., Wang L., Wu Y., Ma C., Yu S., Liu X., Trends analysis of graphene research and development, Journal of Data and Information Science, 3 (2018) 82-100.
  • [6] Kuila T., Bose S., Mishra AK., Khanra P., Kim NH., Lee JH., Chemical functionalization of graphene and its applications, Progress in Materials Science, 57 (2012) 1061-1105.
  • [7] Ren Z., Lan Y., Wang Y., Aligned Carbon Nanotubes, Nano Science and Technology, Springer-Verlag Berlin Heidelberg, Chapter 1: Introduction to Carbon (2013).
  • [8] Istrate OM., Paton KR., Khan U., O’Neill A., Bell AP., Coleman JN., Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon, 78 (2014) 243–249.
  • [9] El Achaby M., Arrakhiz FE., Vaudreuil S., El Kacem Qaiss A., Bousmina M., Fassi-Fehri O., Mechanical, thermal, and rheological properties of graphene based polypropylene nanocomposites prepared by melt mixing, Polymer Composites, 33 No.5 (2012) 733–744.
  • [10] Yan D., Zhang HB., Jia Y., Hu J., Qi XY., Zhang Z., Improved electrical conductivity of polyamide 12/graphene nanocomposites with maleated polyethylene-octane rubber prepared by melt compounding, ACS Applied Materials Interfaces, 4 No.9 (2012) 4740–4745.
  • [11] Vasileiou AA., Kontopoulou M., Docoslis A., A noncovalent compatibilization approach to improve the filler dispersion and properties of polyethylene/graphene composites, ACS Applied Materials Interfaces, 6 No.3 (2014) 1916–1925. Elif ULUTAŞ, Beril EKER GÜMÜŞ, Münir TAŞDEMİR / GU J Sci, Part C, 11(1):133-142(2023) 141 [12] Maio A., Fucarino R., Khatibi R., Rosselli S., Bruno M., Scaffaro R., A novel approach to prevent graphene oxide re-aggregation during the melt compounding with polymers, Composite Science Technology, 119 (2015) 131–137.
  • [13] Chatterjee S., Nüesch F., Chu B., Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers, Chemical Physics Letters, 557 (2013) 92–96.
  • [14] Araby S., Zaman I., Meng Q., Kawashima N., Michelmore A., Kuan HC., Melt compounding with graphene to develop functional, high-performance elastomers, Nanotechnology, 24 No.16 (2013) 165601.
  • [15] Mahmoud WE., Morphology and physical properties of poly (ethylene oxide) loaded graphene nanocomposites prepared by two different techniques, European Polymer Journal, 47 No.8 (2011) 1534–1540.
  • [16] Vallés C., Abdelkader AM., Young RJ., Kinloch IA., Few layer graphene–polypropylene nanocomposites: the role of flake diameter, Faraday Discuss, 173 (2014) 379–390.
  • [17] Vallés C., Kinloch IA., Young RJ., Wilson NR., Rourke JP., Graphene oxide and base-washed graphene oxide as reinforcements in PMMA nanocomposites, Composite Science Technology, 88 (2013) 158–164.
  • [18] Zhang HB., Zheng WG., Yan Q., Yang Y., Wang JW., Lu ZH., Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding, Polymer,51 No.5 (2010) 1191–1196.
  • [19] Bao C., Song L., Xing W., Yuan B., Wilkie CA., Huang J., Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending, Journal of Materials Chemistry, 22 No.13 (2012) 6088–6096.
  • [20] El Achaby M., Arrakhiz F., Vaudreuil S., Essassi E., Qaiss A., Bousmina M., Preparation and characterization of melt-blended graphene nanosheets–poly (vinylidene fluoride) nanocomposites with enhanced properties, Journal of Applied Polymer Science, 127 No.6 (2013) 4697–4707.
  • [21] Kim H., Macosko CW., Processing-property relationships of polycarbonate/graphene composites, Polymer, 50 No.15 (2009) 3797–3809.
  • [22] Jiang X., Drzal LT., Improving electrical conductivity and mechanical properties of high density polyethylene through incorporation of paraffin wax coated exfoliated graphene nanoplatelets and multi-wall carbon nano-tubes, Composites A, 42 No.11 (2011) 1840–1849.
  • [23] Tambrallimath V., Keshavamurthy R., Bavan SD., Patil AY., Khan TMY., Badruddin IA., Kamangar S., Mechanical properties of PC-ABS-based graphene-reinforced polymer nanocomposites fabricated by FDM process, Polymers, 13 No.17 (2021) 2951.
  • [24] Okan BS., Fabrication of multilayer graphene oxide-reinforced high density polyethylene nanocomposites with enhanced thermal and mechanical properties via thermokinetic mixing, Turkish Journal of Chemistry, 4 (2017) 381 – 390.
  • [25] Wang J., Song F., Ding Y., Shao M., The incorporation of graphene to enhance mechanical properties of polypropylene self-reinforced polymer composites, Materials and Design, 195 (2020) 109073.
  • [26] Alghamdi AS., Synthesis and mechanical characterization of high density polyethylene/graphene nanocomposites, Engineering, Technology & Applied Science Research, 8 No.2 (2018) 2814-2817.
  • [27] Kim H, Abdala AA., Macosko, CW., Graphene/polymer nanocomposites. Macromolecules, 43, (2010), 6515-6530. 142 Elif ULUTAŞ, Beril EKER GÜMÜŞ, Münir TAŞDEMİR / GU J Sci, Part C, 11(1):133-142(2023) [28] Liang J., Huang Y., Zhang L., Wang Y., Ma Y., Guo T., Chen Y., Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites, Advanced Functional Materials 19, (2009) 2297-2302.
  • [29] Paul DR., Robeson, LM., Polymer nanotechnology: Nanocomposites. Polymer 49, (2008) 3187-3204.
  • [30] Shen B., Zhai W., Tao M., Lu D., Zheng W., Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites. Composites Science and Technology 77, (2013) 87-94.
  • [31] Wang Y., Shi Z.X., Yin J., Kevlar oligomer functionalized graphene for polymer composites. Polymer 52, (2011) 3661-3670.
  • [32] Schadler LS., Giannaris SC., Ajayan PM., Load transfer in carbon nanotube epoxy composites, Applied Physics Letters 73, (1998) 3842-3844.
  • [33] Papageorgiou DG., Kinloch IA., Young RJ., Mechanical properties of graphene and graphene-besed nanocomposites, Progress in Materials Science, 90 (2017), 75-127.
  • [34] Bhusari SA., Sharma V., Bose S., Basu B., HDPE/UHMWPE hybrid nanocomposites with surface functionalized graphene oxide towards improved strength and cytocompatibility, J.R.Soc. Interface 16 (2019) 1-16.
  • [35] Altay L., Atagür M., Erbektaş M., Sarıkanat M., Grafit nanoplaka takviyeli ultra yüksek molekül ağırlıklı polietilen tabanlı nano-kompozit malzeme geliştirilmesi ve karakterizasyonu, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Müh. Dergisi, 21 No.62 (2019) 323-330.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Elif Ulutaş 0000-0001-7753-8878

Beril Gümüş 0000-0002-4185-4470

Münir Taşdemir 0000-0001-8635-7251

Erken Görünüm Tarihi 14 Mart 2023
Yayımlanma Tarihi 25 Mart 2023
Gönderilme Tarihi 17 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 1

Kaynak Göster

APA Ulutaş, E., Gümüş, B., & Taşdemir, M. (2023). Yüksek Yoğunluklu Polietin (YYPE)/Çinko Borat Polimer Kompozitinin Mekanik Özelliklerine Grafenin Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 11(1), 133-142. https://doi.org/10.29109/gujsc.1237516

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526