Derleme
BibTex RIS Kaynak Göster

3D PRINTING APPLICATIONS IN THE BIOMEDICAL INDUSTRY

Yıl 2025, Erken Görünüm, 1 - 1
https://doi.org/10.29109/gujsc.1601468

Öz

Technological developments have triggered a transformation in industry, giving rise to the concept of the Fourth Industrial Revolution (Industry 4.0). This transformation has brought concepts such as rapid production, innovation, sustainability, digitalisation, personalisation and smart manufacturing to the forefront of many sectors around the world. 3D printing technologies are now a staple in various industries, including biomedical, due to their unparalleled personalised design options, production flexibility and faster product commercialisation using a wide range of materials. This technology has clearly surpassed traditional methods in biomedical applications. It has made it possible to produce complex objects such as implants, prostheses, tissues and organs that are difficult or impossible to produce traditionally. In addition, it has become possible to produce precise microstructures in this field in a cost-effective and personalised manner. This study presents research into 3D printing technologies that are expected to be indispensable in the future for tissue regeneration, therapeutic applications, medical device manufacturing and surgical planning in both research and clinical settings. The focus is on materials that have been and are being developed for biomedical applications, highlighting 3D printing processes that address challenging and limiting conditions and the improvements needed to address these conditions.

Kaynakça

  • [1] Panda, S. K., Rath, K. C., Mishra, S., Khang, A. (2023). “Revolutionizing product development: The growing importance of 3D printing technology”, Materials Today: Proceedings.
  • [2] Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., Hui, D. (2018). “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges” Composites Part B: Engineering, 143, 172-196.
  • [3] Tamir, T. S., Xiong, G., Shen, Z., Leng, J., Fang, Q., Yang, Y., Wang, F. Y. (2023). “3D printing in materials manufacturing industry: A realm of Industry 4.0. Heliyon”.
  • [4] Shuaib, M., Haleem, A., Kumar, S., & Javaid, M. (2021). Impact of 3D Printing on the environment: A literature-based study. Sustainable Operations and Computers, 2, 57-63.
  • [5] Hasan, M. R., Davies, I. J., Pramanik, A., John, M., & Biswas, W. K. (2024). Potential of Recycled PLA in 3D Printing: A Review. Sustainable Manufacturing and Service Economics, 100020.
  • [6] Hajare, D. M., and Gajbhiye, T. S. (2022). “Additive manufacturing (3D printing): Recent progress on advancement of materials and challenges”, Materials Today: Proceedings, 58, 736-743.
  • [7] Elhadad, A. A., Rosa-Sainz, A., Canete, R., Peralta, E., Begines, B., Balbuena, M., Torres, Y. (2023). “Applications and multidisciplinary perspective on 3D printing techniques: Recent developments and future trends”, Materials Science and Engineering: R: Reports, 156, 100760.
  • [8] Melocchi, A., Uboldi, M., Maroni, A., Foppoli, A., Palugan, L., Zema, L., Gazzaniga, A. (2020). “3D printing by fused deposition modeling of single-and multi-compartment hollow systems for oral delivery–A review”, International journal of pharmaceutics, 579, 119155.
  • [9] Lille, M., Nurmela, A., Nordlund, E., Metsä-Kortelainen, S., Sozer, N. (2018). “Applicability of protein and fiber-rich food materials in extrusion-based 3D printing”, Journal of Food Engineering, 220, 20-27.
  • [10] Trembecka-Wójciga, K., Jankowska, M., Tomal, W., Jarzębska, A., Maj, Ł., Czeppe, T., Ortyl, J. (2023). “Advanced 3D printing of graphene oxide nanocomposites: A new initiator system for improved dispersion and mechanical performance”, European Polymer Journal, 198, 112403.
  • [11] Zhang, J., Hirschberg, V., Rodrigue, D. (2022). “Mechanical fatigue of biodegradable polymers: A study on polylactic acid (PLA), polybutylene succinate (PBS) and polybutylene adipate terephthalate (PBAT)”, International Journal of Fatigue, 159, 106798.
  • [12] Ye, X., Gao, Q., He, E., Yang, C., Yang, P., Yan, T., Wu, H. (2023). “Graphene/carbonyl iron powder composite microspheres enhance electromagnetic absorption of 3D printing composites”, Journal of Alloys and Compounds, 937, 168443.
  • [13] Rong, L., Chen, X., Shen, M., Yang, J., Qi, X., Li, Y., Xie, J. (2023). “The application of 3D printing technology on starch-based product: A review”, Trends in Food Science and Technology.
  • [14] Liu, Z., Zhang, M., and Yang, C. H. (2018). “Dual extrusion 3D printing of mashed potatoes/strawberry juice gel”, Lwt, 96, 589-596.
  • [15] Schmidt, T. W., Scherf, M., Wittwer, D., Schumann, P., Guillén, E., Kastner, J. (2023). “HAPTIC digital 3D printing on textile surfaces for high-volume footwear manufacturing”, Materials Today: Proceedings.
  • [16] Sachdeva, A., Agrawal, R., Chaudhary, C., Siddhpuria, D., Kashyap, D., Timung, S. (2023). “Sustainability of 3D printing in industry 4.0: A brief review”, 3D Printing Technology for Water Treatment Applications, 229-251.
  • [17] Alami, A. H., Olabi, A. G., Alashkar, A., Alasad, S., Aljaghoub, H., Rezk, H., Abdelkareem, M. A. (2023). “Additive manufacturing in the aerospace and automotive industries: Recent trends and role in achieving sustainable development goals”, Ain Shams Engineering Journal, 14 (11), 102516.
  • [18] BG, P. K., Mehrotra, S., Marques, S. M., Kumar, L., Verma, R. (2023). “3D printing in personalized medicines: A focus on applications of the technology”, Materials Today Communications, 105875.
  • [19] Englezos, K., Wang, L., Tan, E. C., Kang, L. (2023). “3D printing for personalised medicines: implications for policy and practice”, International Journal of Pharmaceutics, 635, 122785.
  • [20] Alabbasi, M., Agkathidis, A., Chen, H. (2023). “Robotic 3D printing of concrete building components for residential buildings in Saudi Arabia”, Automation in Construction, 148, 104751.
  • [21] Lu, A., Williams III, R. O., Maniruzzaman, M. (2023). “3D printing of biologics—what has been accomplished to date?”, Drug Discovery Today, 103823.
  • [22] Ahangar, P., Cooke, M. E., Weber, M. H., Rosenzweig, D. H. (2019). “Current biomedical applications of 3D printing and additive manufacturing”, Applied sciences, 9 (8), 1713.
  • [23] Gao, G., Hubbell, K., Schilling, A. F., Dai, G., Cui, X. (2017). “Bioprinting cartilage tissue from mesenchymal stem cells and PEG hydrogel”, 3D Cell Culture: Methods and Protocols, 391-398.
  • [24] Prashar, G., Vasudev, H., Bhuddhi, D. (2023). “Additive manufacturing: expanding 3D printing horizon in industry 4.0”, International Journal on Interactive Design and Manufacturing (IJIDeM), 17 (5), 2221-2235.
  • [25] E., Eisenstein, N. M., Lawless, B. M., Jamshidi, P., Segarra, M. A., Addison, O., Cox, S. C. (2019). “The design of additively manufactured lattices to increase the functionality of medical implants”, Materials Science and Engineering: C, 94, 901-908.
  • [26] Daly, A. (2023). “Medical 3D printing, intellectual property, and regulation”, In 3D Printing in Medicine (pp. 385-398). Woodhead Publishing.
  • [27] Aquino, R. P., Barile, S., Grasso, A., Saviano, M. (2018). “Envisioning smart and sustainable healthcare: 3D Printing technologies for personalized medication”, Futures, 103, 35-50.
  • [28] Rischer, H., Szilvay, G. R., Oksman-Caldentey, K. M. (2020). “Cellular agriculture—industrial biotechnology for food and materials”, Current opinion in biotechnology, 61, 128-134.
  • [29] Hinton, T. J., Jallerat, Q., Palchesko, R. N., Park, J. H., Grodzicki, M. S., Shue, H. J., Feinberg, A. W. (2015). “Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels”, Science advances, 1 (9), e1500758.
  • [30] Cherkasskiy, L., Caffrey, J. P., Szewczyk, A. F., Cory, E., Bomar, J. D., Farnsworth, C. L., Upasani, V. V. (2017). “Patient-specific 3D models aid planning for triplane proximal femoral osteotomy in slipped capital femoral epiphysis”, Journal of Children's Orthopaedics, 11 (2), 147-153.
  • [31] Wu, X. B., Wang, J. Q., Zhao, C. P., Sun, X., Shi, Y., Zhang, Z. A., Wang, M. Y. (2015). “Printed three-dimensional anatomic templates for virtual preoperative planning before reconstruction of old pelvic injuries: initial results”, Chinese medical journal, 128 (04), 477-482.
  • [32] Dayyoub, E., Frant, M., Pinnapireddy, S. R., Liefeith, K., Bakowsky, U. (2017). “Antibacterial and anti-encrustation biodegradable polymer coating for urinary catheter”, International journal of pharmaceutics, 531 (1), 205-214.
  • [33] Pere, C. P. P., Economidou, S. N., Lall, G., Ziraud, C., Boateng, J. S., Alexander, B. D., Douroumis, D. (2018). “3D printed microneedles for insulin skin delivery”, International journal of pharmaceutics, 544 (2), 425-432.
  • [34] Martinez, P. R., Goyanes, A., Basit, A. W., Gaisford, S. (2018). “Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D-printed tablets”, AAPS PharmSciTech, 19, 3355-3361.
  • [35] Kazzazi, S. M., and Kranioti, E. F. (2018). “Applicability of 3D‐dental reconstruction in cervical odontometrics”, American journal of physical anthropology, 165 (2), 370-377.
  • [36] He, Y., Yang, F., Zhao, H., Gao, Q., Xia, B., Fu, J. (2016). “Research on the printability of hydrogels in 3D bioprinting”, Scientific reports, 6 (1), 29977.
  • [37] Lee, D. K., Sin, K. S., Shin, C., Kim, J. H., Hwang, K. T., Kim, U. S., Han, K. S. (2023). “Fabrication of 3D structure with heterogeneous compositions using inkjet printing process”, Materials Today Communications, 35, 105753.
  • [38] Duffy, G. L., Liang, H., Williams, R. L., Wellings, D. A., Black, K. (2021). “3D reactive inkjet printing of poly-e-lysine/gellan gum hydrogels for potential corneal constructs”, Materials Science and Engineering, C, 131, 112476.
  • [39] Agarwal, T., Chiesa, I., Costantini, M., Lopamarda, A., Tirelli, M. C., Borra, O. P., Maiti, T. K. (2023). “Chitosan and its derivatives in 3D/4D (bio) printing for tissue engineering and drug delivery applications”, International Journal of Biological Macromolecules, 125669.
  • [40] Munaz, A., Vadivelu, R. K., John, J. S., Barton, M., Kamble, H., Nguyen, N. T. (2016). Three-dimensional printing of biological matters. Journal of Science: Advanced Materials and Devices, 1 (1), 1-17.
  • [41] Yang, Y., Du, T., Zhang, J., Kang, T., Luo, L., Tao, J., Gou, M. (2017). “A 3D‐Engineered conformal implant releases DNA nanocomplexs for eradicating the postsurgery residual glioblastoma”, Advanced science, 4 (8), 1600491.
  • [42] Deshpande, V. A., Antanitta, S. V., Kore, A., Kandasubramanian, B. (2023). “Silk Based Bio–inks for Medical Applications”, European Polymer Journal, 112255.
  • [43] Nocheseda, C. J. C., Liza, F. P., Collera, A. K. M., Caldona, E. B., Advincula, R. C. (2021). “3D printing of metals using biodegradable cellulose hydrogel inks”, Additive Manufacturing, 48, 102380.
  • [44] Ma, Y., and Zhang, L. (2022). “Formulated food inks for extrusion-based 3D printing of personalized foods: a mini review”, Current Opinion in Food Science, 44, 100803.
  • [45] He, Y., Luckett, J., Begines, B., Dubern, J. F., Hook, A. L., Prina, E., Wildman, R. D. (2022). “Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices”, Biomaterials, 281, 121350.
  • [46] Meng, M., Wang, J., Huang, H., Liu, X., Zhang, J., Li, Z. (2023). “3D printing metal implants in orthopedic surgery: Methods, applications and future prospects”, Journal of Orthopaedic Translation, 42, 94-112.
  • [47] Colasante, C., Sanford, Z., Garfein, E., Tepper, O. (2016). “Current trends in 3D printing, bioprosthetics, and tissue engineering in plastic and reconstructive surgery”, Current Surgery Reports, 4, 1-14.
  • [48] Sadia, M., Sośnicka, A., Arafat, B., Isreb, A., Ahmed, W., Kelarakis, A., Alhnan, M. A. (2016). “Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets”, International journal of pharmaceutics, 513 (1-2), 659-668.
  • [49] Awad, A., Fina, F., Goyanes, A., Gaisford, S., Basit, A. W. (2020). “3D printing: Principles and pharmaceutical applications of selective laser sintering”, International Journal of Pharmaceutics, 586, 119594.
  • [50] Olšovská, E., Mikušová, M. L., Tulinská, J., Rollerová, E., Vilamová, Z., Líšková, A., Lukán, N. (2024). “Immunotoxicity of stainless-steel nanoparticles obtained after 3D printing”, Ecotoxicology and Environmental Safety, 272, 116088.
  • [51] Park, S., Shou, W., Makatura, L., Matusik, W., Fu, K. K. (2022). “3D printing of polymer composites: Materials, processes, and applications”, Matter, 5 (1), 43-76.
  • [52] Karakurt, I., Aydoğdu, A., Çıkrıkcı, S., Orozco, J., Lin, L. (2020). “Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: A controlled release study”, International Journal of Pharmaceutics, 584, 119428.
  • [53] Lancaster, M. A., and Knoblich, J. A. (2014). “Organogenesis in a dish: modeling development and disease using organoid Technologies”, Science, 345 (6194), 1247125.
  • [54] [54] Ramos, T., and Moroni, L. (2020). “Tissue engineering and regenerative medicine 2019: the role of biofabrication—a year in review”, Tissue Engineering Part C: Methods, 26 (2), 91-106.
  • [55] Malda, J., Visser, J., Melchels, F. P., Jüngst, T., Hennink, W. E., Dhert, W. J. Hutmacher, D. W. (2013). “25th anniversary article: engineering hydrogels for biofabrication”, Advanced materials, 25 (36), 5011-5028.
  • [56] Lee, J. H., and Kim, H. W. (2018). “Emerging properties of hydrogels in tissue engineering”, Journal of tissue engineering, 9, 2041731418768285.
  • [57] Jungst, T., Smolan, W., Schacht, K., Scheibel, T., Groll, J. (2016). “Strategies and molecular design criteria for 3D printable hydrogels”, Chemical reviews, 116 (3), 1496-1539.
  • [58] Cooke, M., Cox, S., Jones, S., Grover, L., Moxon, S., Snow, M., Smith, A. (2017). “Suspended manufacture of biological structures”.
  • [59] Hosseini, F., Chegeni, M. M., Bidaki, A., Zaer, M., Abolhassani, H., Seyedi, S. A., Yaraki, M. T. (2023). “3D-printing-assisted synthesis of paclitaxel-loaded niosomes functionalized by cross-linked gelatin/alginate composite: Large-scale synthesis and in-vitro anti-cancer evaluation”, International Journal of Biological Macromolecules, 242, 124697.
  • [60] Lu, A., Williams III, R. O., Maniruzzaman, M. (2023). “3D printing of biologics—what has been accomplished to date?”, Drug Discovery Today, 103823.
  • [61] Klarmann, G. J., Piroli, M. E., Loverde, J. R., Nelson, A. F., Li, Z., Gilchrist, K. H., Ho, V. B. (2023). “3D printing a universal knee meniscus using a custom collagen ink”, Bioprinting, 31, e00272.
  • [62] Budharaju, H., Chandrababu, H., Zennifer, A., Chellappan, D., Sethuraman, S., Sundaramurthi, D. (2024). “Tuning thermoresponsive properties of carboxymethyl cellulose (CMC)–agarose composite bioinks to fabricate complex 3D constructs for regenerative medicine”, International Journal of Biological Macromolecules, 260, 129443.
  • [63] Falcone, G., Mazzei, P., Piccolo, A., Esposito, T., Mencherini, T., Aquino, R. P., Russo, P. (2022). “Advanced printable hydrogels from pre-crosslinked alginate as a new tool in semi solid extrusion 3D printing process”, Carbohydrate Polymers, 276, 118746.
  • [64] Chakraborty, J., Majumder, N., Sharma, A., Prasad, S., Ghosh, S. (2022). “3D bioprinted silk-reinforced Alginate-Gellan Gum constructs for cartilage regeneration”, Bioprinting, 28, e00232.
  • [65] Jang, E. J., Patel, R., Sankpal, N. V., Bouchard, L. S., Patel, M. (2023). “Alginate, hyaluronic acid, and chitosan-based 3D printing hydrogel for cartilage tissue regeneration”, European Polymer Journal, 112651.
  • [66] Ilhan, E., Cesur, S., Guler, E., Topal, F., Albayrak, D., Guncu, M. M., Gunduz, O. (2020). “Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material”, International Journal of Biological Macromolecules, 161, 1040-1054.
  • [67] Wang, B., Barceló, X., Von Euw, S., Kelly, D. J. (2023). “3D printing of mechanically functional meniscal tissue equivalents using high concentration extracellular matrix inks”, Materials Today Bio, 20, 100624.
  • [68] Sikhosana, S. T., Gumede, T. P., Malebo, N. J., Ogundeji, A. O. (2021). “Poly (Lactic acid) and its composites as functional materials for 3-d scaffolds in biomedical applications: A mini-review of recent trends”, EXPRESS Polymer Letters, 15 (6), 568-580.
  • [69] Elhattab, K., Bhaduri, S. B., Lawrence, J. G., Sikder, P. (2021). “Fused filament fabrication (three-dimensional printing) of amorphous magnesium phosphate/polylactic acid macroporous biocomposite scaffolds”, ACS Applied Bio Materials, 4 (4), 3276-3286.
  • [70] Ben Ali, N., Hammami, D., Khlif, M., Bradai, C. (2022). “3D Printed Cellular Structures of PLA for Engineering Artificial Bone”, In Advances in Mechanical Engineering and Mechanics II: Selected Papers from the 5th Tunisian Congress on Mechanics, CoTuMe 2021, March 22–24, 2021 (pp. 27-33). Springer International Publishing.
  • [71] Radhakrishnan, S., Nagarajan, S., Bechelany, M., Kalkura, S. N. (2020). “Collagen based biomaterials for tissue engineering applications: A review”, Processes and phenomena on the boundary between biogenic and Abiogenic nature, 3-22.
  • [72] Hale, L., Linley, E., Kalaskar, D. M. (2020). A digital workflow for design and fabrication of bespoke orthoses using 3D scanning and 3D printing, a patient-based case study. Scientific reports, 10 (1), 7028.
  • [73] [73] Dong, C., Petrovic, M., and Davies, I. J. (2024). “Applications of 3D Printing in Medicine: A Review”, Annals of 3D Printed Medicine, 100149.
  • [74] Suleman, A., Kondiah, P. P., Mabrouk, M., Choonara, Y. E. (2021). “The application of 3D-printing and nanotechnology for the targeted treatment of osteosarcoma”, Frontiers in Materials, 8, 668834.
  • [75] Armiento, A. R., Hatt, L. P., Sanchez Rosenberg, G., Thompson, K., Stoddart, M. J. (2020). “Functional biomaterials for bone regeneration: a lesson in complex biology”, Advanced Functional Materials, 30 (44), 1909874.
  • [76] Song, X., Shi, D., Li, W., Qin, H., Han, X. (2022). “Fabrication and properties of interweaved poly (ether ether ketone) composite scaffolds”, Scientific Reports, 12 (1), 22193.
  • [77] Priya, A. S., Premanand, R., Ragupathi, I., Bhaviripudi, V. R., Aepuru, R., Kannan, K., Shanmugaraj, K. (2024). “Comprehensive Review of Hydrogel Synthesis, Characterization, and Emerging Applications”, Journal of Composites Science, 8 (11), 457.
  • [78] Prasad, G., Arunav, H., Dwight, S., Ghosh, M. B., Jayadev, A., Nair, D. I. (2024). “Advancing Sustainable Practices in Additive Manufacturing: A Comprehensive Review on Material Waste Recyclability”, Sustainability, 16 (23), 10246.
  • [79] Cai, C., Zhang, P., Wang, Y., Tan, Y., Lei, I. M., Xu, B. B., Liu, J. (2024). “Sustainable three-dimensional printing of waste paper-based functional materials and constructs”, Advanced Composites and Hybrid Materials, 7 (5), 156.

BİYOMEDİKAL ENDÜSTRİDE 3 BOYUTLU BASKI UYGULAMALARI

Yıl 2025, Erken Görünüm, 1 - 1
https://doi.org/10.29109/gujsc.1601468

Öz

Teknolojik gelişmeler, sanayide dönüşümü tetikleyerek Dördüncü Sanayi Devrimi (Endüstri 4.0) kavramını ortaya çıkarmıştır. Bu dönüşüm, hızlı üretim, inovasyon, sürdürülebilirlik, dijitalleşme, kişiselleştirme ve akıllı üretim gibi kavramları birçok sektörde ön plana çıkarmıştır. 3B baskı teknolojileri, kişiye özel tasarım olanakları, üretim esnekliği ve geniş malzeme yelpazesiyle daha hızlı ürün ticarileştirme imkânı sunarak biyomedikal sektör de dahil olmak üzere çeşitli endüstrilerde vazgeçilmez hale gelmiştir. Bu teknoloji, biyomedikal uygulamalarda geleneksel yöntemleri geride bırakarak, implantlar, protezler, dokular ve organlar gibi karmaşık nesnelerin üretimini mümkün kılmıştır. Geleneksel yöntemlerle üretilmesi zor veya imkânsız olan bu yapılar, 3B baskı sayesinde daha hassas, maliyet-etkin ve kişiye özel olarak üretilebilmektedir. Ayrıca, bu teknoloji sayesinde biyomedikal alanda hassas mikro yapılar da ekonomik ve özelleştirilmiş bir şekilde üretilebilmektedir. Bu çalışma, doku rejenerasyonu, terapötik uygulamalar, tıbbi cihaz üretimi ve cerrahi planlama gibi alanlarda hem araştırma hem de klinik uygulamalarda gelecekte vazgeçilmez olması beklenen 3B baskı teknolojilerine yönelik araştırmaları sunmaktadır. Çalışmada, biyomedikal uygulamalar için geliştirilen ve geliştirilmekte olan malzemeler ele alınarak, 3B baskı süreçlerinin mevcut zorlukları nasıl ele aldığı ve bu zorlukların aşılması için gerekli iyileştirmeler vurgulanmaktadır.

Kaynakça

  • [1] Panda, S. K., Rath, K. C., Mishra, S., Khang, A. (2023). “Revolutionizing product development: The growing importance of 3D printing technology”, Materials Today: Proceedings.
  • [2] Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., Hui, D. (2018). “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges” Composites Part B: Engineering, 143, 172-196.
  • [3] Tamir, T. S., Xiong, G., Shen, Z., Leng, J., Fang, Q., Yang, Y., Wang, F. Y. (2023). “3D printing in materials manufacturing industry: A realm of Industry 4.0. Heliyon”.
  • [4] Shuaib, M., Haleem, A., Kumar, S., & Javaid, M. (2021). Impact of 3D Printing on the environment: A literature-based study. Sustainable Operations and Computers, 2, 57-63.
  • [5] Hasan, M. R., Davies, I. J., Pramanik, A., John, M., & Biswas, W. K. (2024). Potential of Recycled PLA in 3D Printing: A Review. Sustainable Manufacturing and Service Economics, 100020.
  • [6] Hajare, D. M., and Gajbhiye, T. S. (2022). “Additive manufacturing (3D printing): Recent progress on advancement of materials and challenges”, Materials Today: Proceedings, 58, 736-743.
  • [7] Elhadad, A. A., Rosa-Sainz, A., Canete, R., Peralta, E., Begines, B., Balbuena, M., Torres, Y. (2023). “Applications and multidisciplinary perspective on 3D printing techniques: Recent developments and future trends”, Materials Science and Engineering: R: Reports, 156, 100760.
  • [8] Melocchi, A., Uboldi, M., Maroni, A., Foppoli, A., Palugan, L., Zema, L., Gazzaniga, A. (2020). “3D printing by fused deposition modeling of single-and multi-compartment hollow systems for oral delivery–A review”, International journal of pharmaceutics, 579, 119155.
  • [9] Lille, M., Nurmela, A., Nordlund, E., Metsä-Kortelainen, S., Sozer, N. (2018). “Applicability of protein and fiber-rich food materials in extrusion-based 3D printing”, Journal of Food Engineering, 220, 20-27.
  • [10] Trembecka-Wójciga, K., Jankowska, M., Tomal, W., Jarzębska, A., Maj, Ł., Czeppe, T., Ortyl, J. (2023). “Advanced 3D printing of graphene oxide nanocomposites: A new initiator system for improved dispersion and mechanical performance”, European Polymer Journal, 198, 112403.
  • [11] Zhang, J., Hirschberg, V., Rodrigue, D. (2022). “Mechanical fatigue of biodegradable polymers: A study on polylactic acid (PLA), polybutylene succinate (PBS) and polybutylene adipate terephthalate (PBAT)”, International Journal of Fatigue, 159, 106798.
  • [12] Ye, X., Gao, Q., He, E., Yang, C., Yang, P., Yan, T., Wu, H. (2023). “Graphene/carbonyl iron powder composite microspheres enhance electromagnetic absorption of 3D printing composites”, Journal of Alloys and Compounds, 937, 168443.
  • [13] Rong, L., Chen, X., Shen, M., Yang, J., Qi, X., Li, Y., Xie, J. (2023). “The application of 3D printing technology on starch-based product: A review”, Trends in Food Science and Technology.
  • [14] Liu, Z., Zhang, M., and Yang, C. H. (2018). “Dual extrusion 3D printing of mashed potatoes/strawberry juice gel”, Lwt, 96, 589-596.
  • [15] Schmidt, T. W., Scherf, M., Wittwer, D., Schumann, P., Guillén, E., Kastner, J. (2023). “HAPTIC digital 3D printing on textile surfaces for high-volume footwear manufacturing”, Materials Today: Proceedings.
  • [16] Sachdeva, A., Agrawal, R., Chaudhary, C., Siddhpuria, D., Kashyap, D., Timung, S. (2023). “Sustainability of 3D printing in industry 4.0: A brief review”, 3D Printing Technology for Water Treatment Applications, 229-251.
  • [17] Alami, A. H., Olabi, A. G., Alashkar, A., Alasad, S., Aljaghoub, H., Rezk, H., Abdelkareem, M. A. (2023). “Additive manufacturing in the aerospace and automotive industries: Recent trends and role in achieving sustainable development goals”, Ain Shams Engineering Journal, 14 (11), 102516.
  • [18] BG, P. K., Mehrotra, S., Marques, S. M., Kumar, L., Verma, R. (2023). “3D printing in personalized medicines: A focus on applications of the technology”, Materials Today Communications, 105875.
  • [19] Englezos, K., Wang, L., Tan, E. C., Kang, L. (2023). “3D printing for personalised medicines: implications for policy and practice”, International Journal of Pharmaceutics, 635, 122785.
  • [20] Alabbasi, M., Agkathidis, A., Chen, H. (2023). “Robotic 3D printing of concrete building components for residential buildings in Saudi Arabia”, Automation in Construction, 148, 104751.
  • [21] Lu, A., Williams III, R. O., Maniruzzaman, M. (2023). “3D printing of biologics—what has been accomplished to date?”, Drug Discovery Today, 103823.
  • [22] Ahangar, P., Cooke, M. E., Weber, M. H., Rosenzweig, D. H. (2019). “Current biomedical applications of 3D printing and additive manufacturing”, Applied sciences, 9 (8), 1713.
  • [23] Gao, G., Hubbell, K., Schilling, A. F., Dai, G., Cui, X. (2017). “Bioprinting cartilage tissue from mesenchymal stem cells and PEG hydrogel”, 3D Cell Culture: Methods and Protocols, 391-398.
  • [24] Prashar, G., Vasudev, H., Bhuddhi, D. (2023). “Additive manufacturing: expanding 3D printing horizon in industry 4.0”, International Journal on Interactive Design and Manufacturing (IJIDeM), 17 (5), 2221-2235.
  • [25] E., Eisenstein, N. M., Lawless, B. M., Jamshidi, P., Segarra, M. A., Addison, O., Cox, S. C. (2019). “The design of additively manufactured lattices to increase the functionality of medical implants”, Materials Science and Engineering: C, 94, 901-908.
  • [26] Daly, A. (2023). “Medical 3D printing, intellectual property, and regulation”, In 3D Printing in Medicine (pp. 385-398). Woodhead Publishing.
  • [27] Aquino, R. P., Barile, S., Grasso, A., Saviano, M. (2018). “Envisioning smart and sustainable healthcare: 3D Printing technologies for personalized medication”, Futures, 103, 35-50.
  • [28] Rischer, H., Szilvay, G. R., Oksman-Caldentey, K. M. (2020). “Cellular agriculture—industrial biotechnology for food and materials”, Current opinion in biotechnology, 61, 128-134.
  • [29] Hinton, T. J., Jallerat, Q., Palchesko, R. N., Park, J. H., Grodzicki, M. S., Shue, H. J., Feinberg, A. W. (2015). “Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels”, Science advances, 1 (9), e1500758.
  • [30] Cherkasskiy, L., Caffrey, J. P., Szewczyk, A. F., Cory, E., Bomar, J. D., Farnsworth, C. L., Upasani, V. V. (2017). “Patient-specific 3D models aid planning for triplane proximal femoral osteotomy in slipped capital femoral epiphysis”, Journal of Children's Orthopaedics, 11 (2), 147-153.
  • [31] Wu, X. B., Wang, J. Q., Zhao, C. P., Sun, X., Shi, Y., Zhang, Z. A., Wang, M. Y. (2015). “Printed three-dimensional anatomic templates for virtual preoperative planning before reconstruction of old pelvic injuries: initial results”, Chinese medical journal, 128 (04), 477-482.
  • [32] Dayyoub, E., Frant, M., Pinnapireddy, S. R., Liefeith, K., Bakowsky, U. (2017). “Antibacterial and anti-encrustation biodegradable polymer coating for urinary catheter”, International journal of pharmaceutics, 531 (1), 205-214.
  • [33] Pere, C. P. P., Economidou, S. N., Lall, G., Ziraud, C., Boateng, J. S., Alexander, B. D., Douroumis, D. (2018). “3D printed microneedles for insulin skin delivery”, International journal of pharmaceutics, 544 (2), 425-432.
  • [34] Martinez, P. R., Goyanes, A., Basit, A. W., Gaisford, S. (2018). “Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D-printed tablets”, AAPS PharmSciTech, 19, 3355-3361.
  • [35] Kazzazi, S. M., and Kranioti, E. F. (2018). “Applicability of 3D‐dental reconstruction in cervical odontometrics”, American journal of physical anthropology, 165 (2), 370-377.
  • [36] He, Y., Yang, F., Zhao, H., Gao, Q., Xia, B., Fu, J. (2016). “Research on the printability of hydrogels in 3D bioprinting”, Scientific reports, 6 (1), 29977.
  • [37] Lee, D. K., Sin, K. S., Shin, C., Kim, J. H., Hwang, K. T., Kim, U. S., Han, K. S. (2023). “Fabrication of 3D structure with heterogeneous compositions using inkjet printing process”, Materials Today Communications, 35, 105753.
  • [38] Duffy, G. L., Liang, H., Williams, R. L., Wellings, D. A., Black, K. (2021). “3D reactive inkjet printing of poly-e-lysine/gellan gum hydrogels for potential corneal constructs”, Materials Science and Engineering, C, 131, 112476.
  • [39] Agarwal, T., Chiesa, I., Costantini, M., Lopamarda, A., Tirelli, M. C., Borra, O. P., Maiti, T. K. (2023). “Chitosan and its derivatives in 3D/4D (bio) printing for tissue engineering and drug delivery applications”, International Journal of Biological Macromolecules, 125669.
  • [40] Munaz, A., Vadivelu, R. K., John, J. S., Barton, M., Kamble, H., Nguyen, N. T. (2016). Three-dimensional printing of biological matters. Journal of Science: Advanced Materials and Devices, 1 (1), 1-17.
  • [41] Yang, Y., Du, T., Zhang, J., Kang, T., Luo, L., Tao, J., Gou, M. (2017). “A 3D‐Engineered conformal implant releases DNA nanocomplexs for eradicating the postsurgery residual glioblastoma”, Advanced science, 4 (8), 1600491.
  • [42] Deshpande, V. A., Antanitta, S. V., Kore, A., Kandasubramanian, B. (2023). “Silk Based Bio–inks for Medical Applications”, European Polymer Journal, 112255.
  • [43] Nocheseda, C. J. C., Liza, F. P., Collera, A. K. M., Caldona, E. B., Advincula, R. C. (2021). “3D printing of metals using biodegradable cellulose hydrogel inks”, Additive Manufacturing, 48, 102380.
  • [44] Ma, Y., and Zhang, L. (2022). “Formulated food inks for extrusion-based 3D printing of personalized foods: a mini review”, Current Opinion in Food Science, 44, 100803.
  • [45] He, Y., Luckett, J., Begines, B., Dubern, J. F., Hook, A. L., Prina, E., Wildman, R. D. (2022). “Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices”, Biomaterials, 281, 121350.
  • [46] Meng, M., Wang, J., Huang, H., Liu, X., Zhang, J., Li, Z. (2023). “3D printing metal implants in orthopedic surgery: Methods, applications and future prospects”, Journal of Orthopaedic Translation, 42, 94-112.
  • [47] Colasante, C., Sanford, Z., Garfein, E., Tepper, O. (2016). “Current trends in 3D printing, bioprosthetics, and tissue engineering in plastic and reconstructive surgery”, Current Surgery Reports, 4, 1-14.
  • [48] Sadia, M., Sośnicka, A., Arafat, B., Isreb, A., Ahmed, W., Kelarakis, A., Alhnan, M. A. (2016). “Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets”, International journal of pharmaceutics, 513 (1-2), 659-668.
  • [49] Awad, A., Fina, F., Goyanes, A., Gaisford, S., Basit, A. W. (2020). “3D printing: Principles and pharmaceutical applications of selective laser sintering”, International Journal of Pharmaceutics, 586, 119594.
  • [50] Olšovská, E., Mikušová, M. L., Tulinská, J., Rollerová, E., Vilamová, Z., Líšková, A., Lukán, N. (2024). “Immunotoxicity of stainless-steel nanoparticles obtained after 3D printing”, Ecotoxicology and Environmental Safety, 272, 116088.
  • [51] Park, S., Shou, W., Makatura, L., Matusik, W., Fu, K. K. (2022). “3D printing of polymer composites: Materials, processes, and applications”, Matter, 5 (1), 43-76.
  • [52] Karakurt, I., Aydoğdu, A., Çıkrıkcı, S., Orozco, J., Lin, L. (2020). “Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: A controlled release study”, International Journal of Pharmaceutics, 584, 119428.
  • [53] Lancaster, M. A., and Knoblich, J. A. (2014). “Organogenesis in a dish: modeling development and disease using organoid Technologies”, Science, 345 (6194), 1247125.
  • [54] [54] Ramos, T., and Moroni, L. (2020). “Tissue engineering and regenerative medicine 2019: the role of biofabrication—a year in review”, Tissue Engineering Part C: Methods, 26 (2), 91-106.
  • [55] Malda, J., Visser, J., Melchels, F. P., Jüngst, T., Hennink, W. E., Dhert, W. J. Hutmacher, D. W. (2013). “25th anniversary article: engineering hydrogels for biofabrication”, Advanced materials, 25 (36), 5011-5028.
  • [56] Lee, J. H., and Kim, H. W. (2018). “Emerging properties of hydrogels in tissue engineering”, Journal of tissue engineering, 9, 2041731418768285.
  • [57] Jungst, T., Smolan, W., Schacht, K., Scheibel, T., Groll, J. (2016). “Strategies and molecular design criteria for 3D printable hydrogels”, Chemical reviews, 116 (3), 1496-1539.
  • [58] Cooke, M., Cox, S., Jones, S., Grover, L., Moxon, S., Snow, M., Smith, A. (2017). “Suspended manufacture of biological structures”.
  • [59] Hosseini, F., Chegeni, M. M., Bidaki, A., Zaer, M., Abolhassani, H., Seyedi, S. A., Yaraki, M. T. (2023). “3D-printing-assisted synthesis of paclitaxel-loaded niosomes functionalized by cross-linked gelatin/alginate composite: Large-scale synthesis and in-vitro anti-cancer evaluation”, International Journal of Biological Macromolecules, 242, 124697.
  • [60] Lu, A., Williams III, R. O., Maniruzzaman, M. (2023). “3D printing of biologics—what has been accomplished to date?”, Drug Discovery Today, 103823.
  • [61] Klarmann, G. J., Piroli, M. E., Loverde, J. R., Nelson, A. F., Li, Z., Gilchrist, K. H., Ho, V. B. (2023). “3D printing a universal knee meniscus using a custom collagen ink”, Bioprinting, 31, e00272.
  • [62] Budharaju, H., Chandrababu, H., Zennifer, A., Chellappan, D., Sethuraman, S., Sundaramurthi, D. (2024). “Tuning thermoresponsive properties of carboxymethyl cellulose (CMC)–agarose composite bioinks to fabricate complex 3D constructs for regenerative medicine”, International Journal of Biological Macromolecules, 260, 129443.
  • [63] Falcone, G., Mazzei, P., Piccolo, A., Esposito, T., Mencherini, T., Aquino, R. P., Russo, P. (2022). “Advanced printable hydrogels from pre-crosslinked alginate as a new tool in semi solid extrusion 3D printing process”, Carbohydrate Polymers, 276, 118746.
  • [64] Chakraborty, J., Majumder, N., Sharma, A., Prasad, S., Ghosh, S. (2022). “3D bioprinted silk-reinforced Alginate-Gellan Gum constructs for cartilage regeneration”, Bioprinting, 28, e00232.
  • [65] Jang, E. J., Patel, R., Sankpal, N. V., Bouchard, L. S., Patel, M. (2023). “Alginate, hyaluronic acid, and chitosan-based 3D printing hydrogel for cartilage tissue regeneration”, European Polymer Journal, 112651.
  • [66] Ilhan, E., Cesur, S., Guler, E., Topal, F., Albayrak, D., Guncu, M. M., Gunduz, O. (2020). “Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material”, International Journal of Biological Macromolecules, 161, 1040-1054.
  • [67] Wang, B., Barceló, X., Von Euw, S., Kelly, D. J. (2023). “3D printing of mechanically functional meniscal tissue equivalents using high concentration extracellular matrix inks”, Materials Today Bio, 20, 100624.
  • [68] Sikhosana, S. T., Gumede, T. P., Malebo, N. J., Ogundeji, A. O. (2021). “Poly (Lactic acid) and its composites as functional materials for 3-d scaffolds in biomedical applications: A mini-review of recent trends”, EXPRESS Polymer Letters, 15 (6), 568-580.
  • [69] Elhattab, K., Bhaduri, S. B., Lawrence, J. G., Sikder, P. (2021). “Fused filament fabrication (three-dimensional printing) of amorphous magnesium phosphate/polylactic acid macroporous biocomposite scaffolds”, ACS Applied Bio Materials, 4 (4), 3276-3286.
  • [70] Ben Ali, N., Hammami, D., Khlif, M., Bradai, C. (2022). “3D Printed Cellular Structures of PLA for Engineering Artificial Bone”, In Advances in Mechanical Engineering and Mechanics II: Selected Papers from the 5th Tunisian Congress on Mechanics, CoTuMe 2021, March 22–24, 2021 (pp. 27-33). Springer International Publishing.
  • [71] Radhakrishnan, S., Nagarajan, S., Bechelany, M., Kalkura, S. N. (2020). “Collagen based biomaterials for tissue engineering applications: A review”, Processes and phenomena on the boundary between biogenic and Abiogenic nature, 3-22.
  • [72] Hale, L., Linley, E., Kalaskar, D. M. (2020). A digital workflow for design and fabrication of bespoke orthoses using 3D scanning and 3D printing, a patient-based case study. Scientific reports, 10 (1), 7028.
  • [73] [73] Dong, C., Petrovic, M., and Davies, I. J. (2024). “Applications of 3D Printing in Medicine: A Review”, Annals of 3D Printed Medicine, 100149.
  • [74] Suleman, A., Kondiah, P. P., Mabrouk, M., Choonara, Y. E. (2021). “The application of 3D-printing and nanotechnology for the targeted treatment of osteosarcoma”, Frontiers in Materials, 8, 668834.
  • [75] Armiento, A. R., Hatt, L. P., Sanchez Rosenberg, G., Thompson, K., Stoddart, M. J. (2020). “Functional biomaterials for bone regeneration: a lesson in complex biology”, Advanced Functional Materials, 30 (44), 1909874.
  • [76] Song, X., Shi, D., Li, W., Qin, H., Han, X. (2022). “Fabrication and properties of interweaved poly (ether ether ketone) composite scaffolds”, Scientific Reports, 12 (1), 22193.
  • [77] Priya, A. S., Premanand, R., Ragupathi, I., Bhaviripudi, V. R., Aepuru, R., Kannan, K., Shanmugaraj, K. (2024). “Comprehensive Review of Hydrogel Synthesis, Characterization, and Emerging Applications”, Journal of Composites Science, 8 (11), 457.
  • [78] Prasad, G., Arunav, H., Dwight, S., Ghosh, M. B., Jayadev, A., Nair, D. I. (2024). “Advancing Sustainable Practices in Additive Manufacturing: A Comprehensive Review on Material Waste Recyclability”, Sustainability, 16 (23), 10246.
  • [79] Cai, C., Zhang, P., Wang, Y., Tan, Y., Lei, I. M., Xu, B. B., Liu, J. (2024). “Sustainable three-dimensional printing of waste paper-based functional materials and constructs”, Advanced Composites and Hybrid Materials, 7 (5), 156.
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyofabrikasyon
Bölüm Tasarım ve Teknoloji
Yazarlar

Mustafa Güneş 0000-0002-0266-6370

Metin Zeyveli 0000-0003-4220-9403

Erken Görünüm Tarihi 8 Şubat 2025
Yayımlanma Tarihi
Gönderilme Tarihi 16 Aralık 2024
Kabul Tarihi 5 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Erken Görünüm

Kaynak Göster

APA Güneş, M., & Zeyveli, M. (2025). 3D PRINTING APPLICATIONS IN THE BIOMEDICAL INDUSTRY. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji1-1. https://doi.org/10.29109/gujsc.1601468

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526