Derleme
BibTex RIS Kaynak Göster

A Comprehensive Review of Intelligent Islanding Detection Methods for Grid Integrated Distributed Generation Systems

Yıl 2023, Cilt: 11 Sayı: 3, 592 - 612, 27.09.2023
https://doi.org/10.29109/gujsc.1195562

Öz

Microgrid is an important part of the future energy system, which can operate in either grid connected or islanding mode, enabling the increasing integration of distributed generation units such as photovoltaic energy, wind energy and hydroelectric energy into the power systems. The microgrid concept has a great potential for future smart grids which seek to reduce fuel use, line losses, carbon footprint, emissions, costs and improve energy efficiency and stability. However, the integration of distributed generation into the power system also causes some drawbacks and risks in controlling, operating, and protecting of power system. One of the most prior issues is islanding phenomenon which is defined as a situation in which one or more distributed generations as a part of the power system separated from the rest of the network. Unintentional (unplanned) islanding may lead to power system quality, frequency instability, a hazard to personnel safety, system components, etc. There are many islanding detection methods in the literature. This paper overview intelligent islanding detection methods (IDM) and discuss in terms of none detection zone (NDZ), detection time, cost of operation, accuracy, and power quality. Especially, real time experimental studies are analyzed to demonstrate the applicability of the proposed methods. In the view of this review, economical and applicable solutions are presented for researcher to select islanding detection methods.

Kaynakça

  • [1] IEA, “A 10-Point Plan to Reduce the European Union ’ s Reliance on Russian Natural Gas,” 2022.
  • [2] M. R. TÜR and F. YAPRDAKDAL, “Yenilenebilir Enerji Kaynaklarına Dayalı Bir Sistemde Güç Kalitesi Analizi, Kontrolü ve İzlemesi,” Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol., vol. 8, no. 3, pp. 572–587, 2020, doi: 10.29109/gujsc.722014.
  • [3] J. M. Lee, “Islanding Detection Methods for Microgrids,” p. 125, 2011.
  • [4] D. Kumar and P. S. Bhowmik, “Artificial neural network and phasor data-based islanding detection in smart grid,” IET Gener. Transm. Distrib., vol. 12, no. 21, pp. 5843–5850, 2018, doi: 10.1049/iet-gtd.2018.6299.
  • [5] J. A. Laghari, H. Mokhlis, M. Karimi, A. H. A. Bakar, and H. Mohamad, “Computational Intelligence based techniques for islanding detection of distributed generation in distribution network: A review,” Energy Convers. Manag., vol. 88, pp. 139–152, 2014, doi: 10.1016/j.enconman.2014.08.024.
  • [6] T. Basso, “IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid,” Nrel, no. December, p. 22, 2014.
  • [7] A. Yilmaz and G. Bayrak, “Mikro Ş ebekelerde Ada Mod Çal ış man ı n Geli ş tirilen Sürekli Dalgac ı k Dönü ş ümü Yöntemi ile Gerçek Zamanl ı Olarak Tespiti Mikro Şebekeler de Ada Mod Çalışmanın Geli ş tirilen Sürekli Dalgacık Dönüşümü Yöntemi ile Gerçek Zamanlı Olarak Tespiti Real,” no. December, 2019. [8] “IEEE Std 1547TM-2003 (R2008) - for Interconnecting Distributed Resources with Electric Power Systems,” 2003.
  • [9] X. Chen, Y. Li, and P. Crossley, “A novel hybrid islanding detection method for grid-connected microgrids with multiple inverter-based distributed generators based on adaptive reactive power disturbance and passive criteria,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 9342–9356, 2019, doi: 10.1109/TPEL.2018.2886930.
  • [10] R. M. Radhakrishnan, A. Sankar, and S. Rajan, “A combined islanding detection algorithm for grid connected multiple microgrids for enhanced microgrid utilisation,” Int. Trans. Electr. Energy Syst., vol. 30, no. 2, pp. 1–22, 2020, doi: 10.1002/2050-7038.12232.
  • [11] K. H. Reddy, “Variable converter Pulse Island test in integrated distributed generation of electrical energy system: Variable converter pulse based island detection,” Int. Trans. Electr. Energy Syst., no. January, pp. 1–16, 2021, doi: 10.1002/2050-7038.12920.
  • [12] R. Zamani, M. E. Hamedani Golshan, H. Haes Alhelou, and N. Hatziargyriou, “A novel hybrid islanding detection method using dynamic characteristics of synchronous generator and signal processing technique,” Electr. Power Syst. Res., vol. 175, no. May, p. 105911, 2019, doi: 10.1016/j.epsr.2019.105911.
  • [13] D. P. Mishra, S. R. Samantaray, and G. Joos, “A combined wavelet and data-mining based intelligent protection scheme for microgrid,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2295–2304, 2016, doi: 10.1109/TSG.2015.2487501.
  • [14] M. S. Kim, R. Haider, G. J. Cho, C. H. Kim, C. Y. Won, and J. S. Chai, “Comprehensive review of islanding detection methods for distributed generation systems,” Energies, vol. 12, no. 5, pp. 1–21, 2019, doi: 10.3390/en12050837.
  • [15] S. Perlenfein, M. Ropp, J. Neely, S. Gonzalez, and L. Rashkin, “Subharmonic power line carrier (PLC) based island detection,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2015-May, no. May, pp. 2230–2236, 2015, doi: 10.1109/APEC.2015.7104659. [16] A. Etxegarai, P. Eguía, and I. Zamora, “Analysis of remote islanding detection methods for distributed resources,” Renew. Energy Power Qual. J., vol. 1, no. 9, pp. 1142–1147, 2011, doi: 10.24084/repqj09.580.
  • [17] G. Bayrak and E. Kabalci, “Implementation of a new remote islanding detection method for wind-solar hybrid power plants,” Renew. Sustain. Energy Rev., vol. 58, pp. 1–15, 2016, doi: 10.1016/j.rser.2015.12.227. [18] Z. Ye, A. Kolwalkar, Y. Zhang, P. Du, and R. Walling, “Evaluation of anti-islanding schemes based on nondetection zone concept,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1171–1176, 2004, doi: 10.1109/TPEL.2004.833436.
  • [19] J. C. M. Vieira, D. Salles, and W. Freitas, “Power imbalance application region method for distributed synchronous generator anti-islanding protection design and evaluation,” Electr. Power Syst. Res., vol. 81, no. 10, pp. 1952–1960, 2011, doi: 10.1016/j.epsr.2011.06.009. [20] W. Freitas, W. Xu, C. M. Affonso, and Z. Huang, “Comparative analysis between ROCOF and vector surge relays for distributed generation applications,” IEEE Trans. Power Deliv., vol. 20, no. 2 II, pp. 1315–1324, 2005, doi: 10.1109/TPWRD.2004.834869. [21] J. Merino, P. Mendoza-Araya, G. Venkataramanan, and M. Baysal, “Islanding Detection in Microgrids Using Harmonic Signatures,” IEEE Trans. Power Deliv., vol. 30, no. 5, pp. 2102–2109, 2015, doi: 10.1109/TPWRD.2014.2383412.
  • [22] R. Haider, C. H. Kim, T. Ghanbari, S. Basit, and A. Bukhari, “Harmonic signature based islanding detection in grid-connected distributed generation systems using Kalman filter,” pp. 1813–1822, 2018, doi: 10.1049/iet-rpg.2018.5381. [23] S. Park, M. Kwon, and S. Choi, “Reactive Power P&O Anti-Islanding Method for a Grid-Connected Inverter with Critical Load,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 204–212, 2018, doi: 10.1109/TPEL.2018.2818441. [24] H. Vahedi, M. Karrari, and G. B. Gharehpetian, “Accurate SFS Parameter Design Criterion for Inverter-Based Distributed Generation,” IEEE Trans. Power Deliv., vol. 31, no. 3, pp. 1050–1059, 2016, doi: 10.1109/TPWRD.2015.2391193.
  • [25] N. Ikken, N. Tariba, A. Bouknadel, A. Haddou, H. El Omari, and H. El Omari, “A fuzzy rule based approach for islanding detection in grid connected inverter systems,” vol. 11, no. 6, pp. 4759–4766, 2021, doi: 10.11591/ijece.v11i6.pp4759-4766. [26] C. Li, C. Cao, Y. Cao, Y. Kuang, L. Zeng, and B. Fang, “A review of islanding detection methods for microgrid,” Renew. Sustain. Energy Rev., vol. 35, pp. 211–220, 2014, doi: 10.1016/j.rser.2014.04.026.
  • [27] S. Chandak, P. Bhowmik, M. Mishra, and P. K. Rout, “Autonomous microgrid operation subsequent to an anti-islanding scheme,” Sustain. Cities Soc., vol. 39, no. December 2017, pp. 430–448, 2018, doi: 10.1016/j.scs.2018.03.009.
  • [28] A. M. Massoud, K. H. Ahmed, S. J. Finney, and B. W. Williams, “Harmonic distortion-based island detection technique for inverter-based distributed generation,” IET Renew. Power Gener., vol. 3, no. 4, pp. 493–507, 2009, doi: 10.1049/iet-rpg.2008.0101. [29] R. H. Lasseter, “Microgrids and distributed generation,” Intell. Autom. Soft Comput., vol. 16, no. 2, pp. 225–234, 2010, doi: 10.1080/10798587.2010.10643078. [30] Y. Bicer, I. Dincer, and M. Aydin, “Maximizing performance of fuel cell using artificial neural network approach for smart grid applications,” Energy, vol. 116, pp. 1205–1217, 2016, doi: 10.1016/j.energy.2016.10.050.
  • [31] F. Yaprakdal and M. Baysal, “Optimal Operational Scheduling of Reconfigurable Microgrids in Presence of Renewable Energy Sources,” Energies, no. May, 2019, doi: 10.3390/en12101858. [32] B. K. Panigrahi, A. Bhuyan, J. Shukla, P. K. Ray, and S. Pati, “A comprehensive review on intelligent islanding detection techniques for renewable energy integrated power system,” Int. J. Energy Res., vol. 45, no. 10, pp. 14085–14116, 2021, doi: 10.1002/er.6641. [33] M. W. Altaf, M. T. Arif, S. Saha, S. N. Islam, M. E. Haque, and A. M. T. Oo, “Effective ROCOF Based Islanding Detection Technique for Different Types of Microgrid,” Conf. Rec. - IAS Annu. Meet. (IEEE Ind. Appl. Soc., vol. 2021-Octob, no. 2, pp. 1809–1821, 2021, doi: 10.1109/IAS48185.2021.9677270.
  • [34] A. G. Abd-Elkader, S. M. Saleh, and M. B. Magdi Eiteba, “A passive islanding detection strategy for multi-distributed generations,” Int. J. Electr. Power Energy Syst., vol. 99, no. November 2017, pp. 146–155, 2018, doi: 10.1016/j.ijepes.2018.01.005. [35] R. Bekhradian, M. Davarpanah, and M. Sanaye-Pasand, “Novel Approach for Secure Islanding Detection in Synchronous Generator Based Microgrids,” IEEE Trans. Power Deliv., vol. 8977, no. c, pp. 1–1, 2018, doi: 10.1109/TPWRD.2018.2869300. [36] R. Somalwar, S. G. Kadwane, and D. K. Mohanta, “Harmonics-Based Enhanced Passive Islanding Method for Grid-Connected System,” Electr. Power Components Syst., vol. 45, no. 14, pp. 1554–1563, 2017, doi: 10.1080/15325008.2017.1361485.
  • [37] J. A. Laghari, H. Mokhlis, M. Karimi, A. H. A. Bakar, and A. Shahriari, “Artificial neural network based islanding detection technique for mini hydro type distributed generation,” IET Semin. Dig., vol. 2014, no. CP659, 2014, doi: 10.1049/cp.2014.1469. [38] V. L. Merlin, R. C. Santos, A. P. Grilo, J. C. M. Vieira, D. V. Coury, and M. Oleskovicz, “A new artificial neural network based method for islanding detection of distributed generators,” Int. J. Electr. Power Energy Syst., vol. 75, pp. 139–151, 2016, doi: 10.1016/j.ijepes.2015.08.016.
  • [39] N. B. Hartmann, R. C. Dos Santos, A. P. Grilo, and J. C. M. Vieira, “Hardware Implementation and Real-Time Evaluation of an ANN-Based Algorithm for Anti-Islanding Protection of Distributed Generators,” IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 5051–5059, 2018, doi: 10.1109/TIE.2017.2767524. [40] “23. Islanding detection approach with negligible non‐detection zone based on feature extraction discrete wavelet transform and artificial neural network.pdf.”
  • [41] M. Tarafdar Hagh, H. Ebrahimian, and N. Ghadimi, “Hybrid intelligent water drop bundled wavelet neural network to solve the islanding detection by inverter-based DG,” Front. Energy, vol. 9, no. 1, pp. 75–90, 2015, doi: 10.1007/s11708-014-0337-3. [42] K. El-Arroudi, G. Joos, I. Kamwa, and D. T. McGillis, “Intelligent-based approach to islanding detection in distributed generation,” IEEE Trans. Power Deliv., vol. 22, no. 2, pp. 828–835, 2007, doi: 10.1109/TPWRD.2007.893592.
  • [43] D. Mlakic, H. R. Baghaee, and S. Nikolovski, “A Novel ANFIS-based Islanding Detection for Inverter–Interfaced Microgrids,” IEEE Trans. Smart Grid, vol. PP, no. c, p. 1, 2018, doi: 10.1109/TSG.2018.2859360.
  • [44] R. K. Patnaik and P. K. Dash, “Impact of wind farms on disturbance detection and classification in distributed generation using modified Adaline network and an adaptive neuro-fuzzy information system,” Appl. Soft Comput. J., vol. 30, pp. 549–566, 2015, doi: 10.1016/j.asoc.2015.02.009.
  • [45] B. Matic-cuka and M. Kezunovic, “Islanding Detection for Inverter-Based Distributed Generation Using Support Vector Machine Method,” IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2676–2686, 2014.
  • [46] S. K. G. Manikonda and D. N. Gaonkar, “Islanding detection method based on image classification technique using histogram of oriented gradient features,” IET Gener. Transm. Distrib., vol. 14, no. 14, pp. 2790–2799, 2020, doi: 10.1049/iet-gtd.2019.1824.
  • [47] M. Ahmadipour, H. Hizam, M. Lutfi Othman, M. A. M. Radzi, and N. Chireh, “A novel islanding detection technique using modified Slantlet transform in multi-distributed generation,” Int. J. Electr. Power Energy Syst., vol. 112, no. April, pp. 460–475, 2019, doi: 10.1016/j.ijepes.2019.05.008.
  • [48] S. Chandak, M. Mishra, S. Nayak, and P. K. Rout, “Optimal feature selection for islanding detection in distributed generation,” IET Smart Grid, vol. 1, no. 3, pp. 85–95, 2018, doi: 10.1049/iet-stg.2018.0021.
  • [49] M. Mishra and P. K. Rout, “Fast discrete s-transform and extreme learning machine based approach to islanding detection in grid-connected distributed generation,” Energy Syst., vol. 10, no. 3, pp. 757–789, 2019, doi: 10.1007/s12667-018-0285-9.
  • [50] A. Khamis, Y. Xu, Z. Y. Dong, and R. Zhang, “Faster Detection of Microgrid Islanding Events Using an Adaptive Ensemble Classifier,” IEEE Trans. Smart Grid, vol. 9, no. 3, pp. 1889–1899, 2018, doi: 10.1109/TSG.2016.2601656.
  • [51] T. S. Menezes, R. A. S. Fernandes, and D. V. Coury, “Intelligent islanding detection with grid topology adaptation and minimum non-detection zone,” Electr. Power Syst. Res., vol. 187, no. February, p. 106470, 2020, doi: 10.1016/j.epsr.2020.106470.
  • [52] M. Heidari, G. Seifossadat, and M. Razaz, “An intelligence-based islanding detection method using DWT and ANN,” Turkish J. Electr. Eng. Comput. Sci., vol. 23, no. 2, pp. 381–394, 2015, doi: 10.3906/elk-1210-107.
  • [53] E. C. Pedrino, T. Yamada, T. R. Lunardi, and J. C. de M. Vieira, “Islanding detection of distributed generation by using multi-gene genetic programming based classifier,” Appl. Soft Comput. J., vol. 74, pp. 206–215, 2019, doi: 10.1016/j.asoc.2018.10.016.
  • [54] E. Shahryari, M. Nooshyar, and B. Sobhani, “Combination of neural network and wavelet transform for islanding detection of distributed generation in a small-scale network,” Int. J. Ambient Energy, vol. 40, no. 3, pp. 263–273, 2019, doi: 10.1080/01430750.2017.1392348.
  • [55] A. Khamis, H. Shareef, A. Mohamed, and E. Bizkevelci, “Islanding detection in a distributed generation integrated power system using phase space technique and probabilistic neural network,” Neurocomputing, vol. 148, pp. 587–599, 2015, doi: 10.1016/j.neucom.2014.07.004.
  • [56] A. Khamis, H. Shareef, and A. Mohamed, “Islanding detection and load shedding scheme for radial distribution systems integrated with dispersed generations,” IET Gener. Transm. Distrib., vol. 9, no. 15, pp. 2261–2275, 2015, doi: 10.1049/iet-gtd.2015.0263. [57] Y. Bengio, “Learning Deep Architectures for AI,” Found. Trends_R Mach. Learn., vol. 2, no. 1, 2009, doi: 10.1561/2200000006.
  • [58] X. Kong, X. Xu, Z. Yan, S. Chen, H. Yang, and D. Han, “Deep learning hybrid method for islanding detection in distributed generation,” Appl. Energy, vol. 210, no. April 2017, pp. 776–785, 2018, doi: 10.1016/j.apenergy.2017.08.014. [59] A. Najar, H. K. Karegar, and S. Esmaeilbeigi, “Intelligent Islanding Detection Scheme for Microgrid Based on Deep Learning and Wavelet Transform,” 2020 10th Smart Grid Conf. SGC 2020, 2020, doi: 10.1109/SGC52076.2020.9335761.
  • [60] A. A. Abdelsalam, A. A. Salem, E. S. Oda, and A. A. Eldesouky, “Islanding Detection of Microgrid Incorporating Inverter Based DGs Using Long Short-Term Memory Network,” IEEE Access, vol. 8, pp. 106471–106486, 2020, doi: 10.1109/access.2020.3000872.
  • [61] S. B. A. Bukhari, K. K. Mehmood, A. Wadood, and H. Park, “Intelligent islanding detection of microgrids using long short-term memory networks,” Energies, vol. 14, no. 18. 2021. doi: 10.3390/en14185762. [62] A. K. Özcanlı and M. Baysal, “A novel Multi-LSTM based deep learning method for islanding detection in the microgrid,” Electr. Power Syst. Res., vol. 202, no. August 2021, 2022, doi: 10.1016/j.epsr.2021.107574.
  • [63] B. Özcanlı, Asiye Kaymaz and M. Baysal, “Islanding detection in microgrid using deep learning based on 1D CNN and CNN-LSTM networks,” Sustain. Energy, Grids Networks, p. 110456, 2022, doi: https://doi.org/10.1016/j.segan.2022.100839.
  • [64] M. O. Faruque et al., “Real-Time Simulation Technologies for Power Systems Design, Testing, and Analysis,” IEEE Power Energy Technol. Syst. J., vol. 2, no. 2, pp. 63–73, 2015, doi: 10.1109/JPETS.2015.2427370.
  • [65] S. C. Paiva, R. L. de A. Ribeiro, D. K. Alves, F. B. Costa, and T. de O. A. Rocha, “A wavelet-based hybrid islanding detection system applied for distributed generators interconnected to AC microgrids,” International Journal of Electrical Power and Energy Systems, vol. 121. 2020. doi: 10.1016/j.ijepes.2020.106032.
  • [66] R. Bakhshi-Jafarabadi, J. Sadeh, and M. Popov, “Maximum power point tracking injection method for islanding detection of grid-connected photovoltaic systems in microgrid,” IEEE Trans. Power Deliv., vol. 36, no. 1, pp. 168–179, 2021, doi: 10.1109/TPWRD.2020.2976739.
  • [67] A. Hoke, A. Nelson, B. Miller, S. Chakraborty, F. Bell, and M. Mccarty, “Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios,” no. July, p. 69, 2016.
  • [68] A. F. Hoke, A. Nelson, S. Chakraborty, F. Bell, and M. McCarty, “An Islanding Detection Test Platform for Multi-Inverter Islands Using Power HIL,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 7944–7953, 2018, doi: 10.1109/TIE.2018.2801855.
  • [69] A. YILMAZ and G. BAYRAK, “an Improved Cwt-Based Islanding Detection Method for a Developed Microgrid in Real-Time,” Mugla J. Sci. Technol., vol. 6, pp. 10–17, 2020, doi: 10.22531/muglajsci.654432.
  • [70] A. Yılmaz and G. Bayrak, “A new signal processing-based islanding detection method using pyramidal algorithm with undecimated wavelet transform for distributed generators of hydrogen energy,” Int. J. Hydrogen Energy, no. xxxx, 2022, doi: 10.1016/j.ijhydene.2022.03.114.
  • [71] P. Buduma, S. J. Pinto, and G. Panda, “Wavelet based Islanding Detection in a Three-Phase Grid Collaborative Inverter System using FPGA Platform,” India Int. Conf. Power Electron. IICPE, vol. 2018-Decem, pp. 2–7, 2018, doi: 10.1109/IICPE.2018.8709550.
  • [72] B. K. Chaitanya, A. Yadav, and M. Pazoki, “Reliable Islanding Detection Scheme for Distributed Generation Based on Pattern-Recognition,” IEEE Trans. Ind. Informatics, vol. 17, no. 8, pp. 5230–5238, 2021, doi: 10.1109/TII.2020.3029675.
  • [73] Q. Cui, K. El-Arroudi, and G. Joós, “Real-time hardware-in-the-loop simulation for islanding detection schemes in hybrid distributed generation systems,” IET Gener. Transm. Distrib., vol. 11, no. 12, pp. 3050–3056, 2017, doi: 10.1049/iet-gtd.2016.1562.
  • [74] J. Ke, Z. Zhengxuan, Y. Zhe, F. Yu, B. Tianshu, and Z. Jiankang, “Intelligent islanding detection method for photovoltaic power system based on Adaboost algorithm,” IET Gener. Transm. Distrib., vol. 14, no. 18, pp. 3630–3640, 2020, doi: 10.1049/iet-gtd.2018.6841.
  • [75] P. Kumar, V. Kumar, and R. Pratap, “FPGA implementation of an Islanding detection technique for microgrid using periodic maxima of superimposed voltage components,” IET Gener. Transm. Distrib., vol. 14, no. 9, pp. 1673–1683, 2020, doi: 10.1049/iet-gtd.2018.5914.

Şebekeye Bağlı Dağıtık Üretim Sistemleri için Akıllı Ada Çalışma Tespit Yöntemlerinin İncelenmesi

Yıl 2023, Cilt: 11 Sayı: 3, 592 - 612, 27.09.2023
https://doi.org/10.29109/gujsc.1195562

Öz

Mikro şebekeler fotovoltaik, rüzgâr ve hidrolik gibi enerji kaynaklarının şebekeye entegrasyonunu sağlayan ve şebekeye bağlı ve şebekeden bağımsız çalışabilen, geleceğin enerji sisteminin önemli bir parçasını oluşturmaktadır. Mikro şebeke konsepti; fosil yakıt kullanımı, hat kayıpları, karbon ayak izi, emisyon azaltma ve enerji verimliliğini arttırma hedefi ile geleceğin akıllı şebekeleri için büyük bir potansiyele sahiptir. Bununla birlikte dağıtık üretimin güç sistemine entegrasyonu, güç sisteminin kontrolü işletilmesi ve korunmasında bazı dezavantajlara ve risklere neden olabilmektedir. Bu konudaki en büyük problemlerden biri, şebekeye bağlı çalışan mikro şebekenin herhangi bir arıza durumunda ana şebekeden ayrılarak çalışmaya devam ettiği istenmeyen ada çalışma durumudur. İstenmeyen ada çalışma durumu, güç sisteminde frekans kararsızlığına neden olarak, personel güvenliği ve güç sistemindeki ekipmanları için tehdit unsuru oluşturabilir. Bu durumu önlemek amacıyla ada çalışmanın ivedilikle tespit edilerek ana şebeke ile mikro şebekenin bağlantısı fiziksel olarak kesilmelidir. Literatürde birçok ada çalışma tespit yöntemi önerilmiştir. Bu çalışmada, literatürde sunulan akıllı ada çalışma tespit yöntemleri detaylı olarak incelenmiş ve önerilen yöntemler algılama dışı bölge, tespit süresi, işletme maliyeti, doğruluk ve güç kalitesi bakımından analiz edilmiştir. Diğer çalışmalardan farklı olarak bu çalışmada, gerçek zamanlı deneysel çalışmalar, önerilen yöntemlerin uygulanabilirliğini göstermek amacıyla detaylı olarak incelenmiştir. Böylelikle ortaya konulan yöntemlerin pratikte uygulanabilirliği konusunda araştırmacılara önemli bir kaynak oluşturulmuştur.

Kaynakça

  • [1] IEA, “A 10-Point Plan to Reduce the European Union ’ s Reliance on Russian Natural Gas,” 2022.
  • [2] M. R. TÜR and F. YAPRDAKDAL, “Yenilenebilir Enerji Kaynaklarına Dayalı Bir Sistemde Güç Kalitesi Analizi, Kontrolü ve İzlemesi,” Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol., vol. 8, no. 3, pp. 572–587, 2020, doi: 10.29109/gujsc.722014.
  • [3] J. M. Lee, “Islanding Detection Methods for Microgrids,” p. 125, 2011.
  • [4] D. Kumar and P. S. Bhowmik, “Artificial neural network and phasor data-based islanding detection in smart grid,” IET Gener. Transm. Distrib., vol. 12, no. 21, pp. 5843–5850, 2018, doi: 10.1049/iet-gtd.2018.6299.
  • [5] J. A. Laghari, H. Mokhlis, M. Karimi, A. H. A. Bakar, and H. Mohamad, “Computational Intelligence based techniques for islanding detection of distributed generation in distribution network: A review,” Energy Convers. Manag., vol. 88, pp. 139–152, 2014, doi: 10.1016/j.enconman.2014.08.024.
  • [6] T. Basso, “IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid,” Nrel, no. December, p. 22, 2014.
  • [7] A. Yilmaz and G. Bayrak, “Mikro Ş ebekelerde Ada Mod Çal ış man ı n Geli ş tirilen Sürekli Dalgac ı k Dönü ş ümü Yöntemi ile Gerçek Zamanl ı Olarak Tespiti Mikro Şebekeler de Ada Mod Çalışmanın Geli ş tirilen Sürekli Dalgacık Dönüşümü Yöntemi ile Gerçek Zamanlı Olarak Tespiti Real,” no. December, 2019. [8] “IEEE Std 1547TM-2003 (R2008) - for Interconnecting Distributed Resources with Electric Power Systems,” 2003.
  • [9] X. Chen, Y. Li, and P. Crossley, “A novel hybrid islanding detection method for grid-connected microgrids with multiple inverter-based distributed generators based on adaptive reactive power disturbance and passive criteria,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 9342–9356, 2019, doi: 10.1109/TPEL.2018.2886930.
  • [10] R. M. Radhakrishnan, A. Sankar, and S. Rajan, “A combined islanding detection algorithm for grid connected multiple microgrids for enhanced microgrid utilisation,” Int. Trans. Electr. Energy Syst., vol. 30, no. 2, pp. 1–22, 2020, doi: 10.1002/2050-7038.12232.
  • [11] K. H. Reddy, “Variable converter Pulse Island test in integrated distributed generation of electrical energy system: Variable converter pulse based island detection,” Int. Trans. Electr. Energy Syst., no. January, pp. 1–16, 2021, doi: 10.1002/2050-7038.12920.
  • [12] R. Zamani, M. E. Hamedani Golshan, H. Haes Alhelou, and N. Hatziargyriou, “A novel hybrid islanding detection method using dynamic characteristics of synchronous generator and signal processing technique,” Electr. Power Syst. Res., vol. 175, no. May, p. 105911, 2019, doi: 10.1016/j.epsr.2019.105911.
  • [13] D. P. Mishra, S. R. Samantaray, and G. Joos, “A combined wavelet and data-mining based intelligent protection scheme for microgrid,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2295–2304, 2016, doi: 10.1109/TSG.2015.2487501.
  • [14] M. S. Kim, R. Haider, G. J. Cho, C. H. Kim, C. Y. Won, and J. S. Chai, “Comprehensive review of islanding detection methods for distributed generation systems,” Energies, vol. 12, no. 5, pp. 1–21, 2019, doi: 10.3390/en12050837.
  • [15] S. Perlenfein, M. Ropp, J. Neely, S. Gonzalez, and L. Rashkin, “Subharmonic power line carrier (PLC) based island detection,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2015-May, no. May, pp. 2230–2236, 2015, doi: 10.1109/APEC.2015.7104659. [16] A. Etxegarai, P. Eguía, and I. Zamora, “Analysis of remote islanding detection methods for distributed resources,” Renew. Energy Power Qual. J., vol. 1, no. 9, pp. 1142–1147, 2011, doi: 10.24084/repqj09.580.
  • [17] G. Bayrak and E. Kabalci, “Implementation of a new remote islanding detection method for wind-solar hybrid power plants,” Renew. Sustain. Energy Rev., vol. 58, pp. 1–15, 2016, doi: 10.1016/j.rser.2015.12.227. [18] Z. Ye, A. Kolwalkar, Y. Zhang, P. Du, and R. Walling, “Evaluation of anti-islanding schemes based on nondetection zone concept,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1171–1176, 2004, doi: 10.1109/TPEL.2004.833436.
  • [19] J. C. M. Vieira, D. Salles, and W. Freitas, “Power imbalance application region method for distributed synchronous generator anti-islanding protection design and evaluation,” Electr. Power Syst. Res., vol. 81, no. 10, pp. 1952–1960, 2011, doi: 10.1016/j.epsr.2011.06.009. [20] W. Freitas, W. Xu, C. M. Affonso, and Z. Huang, “Comparative analysis between ROCOF and vector surge relays for distributed generation applications,” IEEE Trans. Power Deliv., vol. 20, no. 2 II, pp. 1315–1324, 2005, doi: 10.1109/TPWRD.2004.834869. [21] J. Merino, P. Mendoza-Araya, G. Venkataramanan, and M. Baysal, “Islanding Detection in Microgrids Using Harmonic Signatures,” IEEE Trans. Power Deliv., vol. 30, no. 5, pp. 2102–2109, 2015, doi: 10.1109/TPWRD.2014.2383412.
  • [22] R. Haider, C. H. Kim, T. Ghanbari, S. Basit, and A. Bukhari, “Harmonic signature based islanding detection in grid-connected distributed generation systems using Kalman filter,” pp. 1813–1822, 2018, doi: 10.1049/iet-rpg.2018.5381. [23] S. Park, M. Kwon, and S. Choi, “Reactive Power P&O Anti-Islanding Method for a Grid-Connected Inverter with Critical Load,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 204–212, 2018, doi: 10.1109/TPEL.2018.2818441. [24] H. Vahedi, M. Karrari, and G. B. Gharehpetian, “Accurate SFS Parameter Design Criterion for Inverter-Based Distributed Generation,” IEEE Trans. Power Deliv., vol. 31, no. 3, pp. 1050–1059, 2016, doi: 10.1109/TPWRD.2015.2391193.
  • [25] N. Ikken, N. Tariba, A. Bouknadel, A. Haddou, H. El Omari, and H. El Omari, “A fuzzy rule based approach for islanding detection in grid connected inverter systems,” vol. 11, no. 6, pp. 4759–4766, 2021, doi: 10.11591/ijece.v11i6.pp4759-4766. [26] C. Li, C. Cao, Y. Cao, Y. Kuang, L. Zeng, and B. Fang, “A review of islanding detection methods for microgrid,” Renew. Sustain. Energy Rev., vol. 35, pp. 211–220, 2014, doi: 10.1016/j.rser.2014.04.026.
  • [27] S. Chandak, P. Bhowmik, M. Mishra, and P. K. Rout, “Autonomous microgrid operation subsequent to an anti-islanding scheme,” Sustain. Cities Soc., vol. 39, no. December 2017, pp. 430–448, 2018, doi: 10.1016/j.scs.2018.03.009.
  • [28] A. M. Massoud, K. H. Ahmed, S. J. Finney, and B. W. Williams, “Harmonic distortion-based island detection technique for inverter-based distributed generation,” IET Renew. Power Gener., vol. 3, no. 4, pp. 493–507, 2009, doi: 10.1049/iet-rpg.2008.0101. [29] R. H. Lasseter, “Microgrids and distributed generation,” Intell. Autom. Soft Comput., vol. 16, no. 2, pp. 225–234, 2010, doi: 10.1080/10798587.2010.10643078. [30] Y. Bicer, I. Dincer, and M. Aydin, “Maximizing performance of fuel cell using artificial neural network approach for smart grid applications,” Energy, vol. 116, pp. 1205–1217, 2016, doi: 10.1016/j.energy.2016.10.050.
  • [31] F. Yaprakdal and M. Baysal, “Optimal Operational Scheduling of Reconfigurable Microgrids in Presence of Renewable Energy Sources,” Energies, no. May, 2019, doi: 10.3390/en12101858. [32] B. K. Panigrahi, A. Bhuyan, J. Shukla, P. K. Ray, and S. Pati, “A comprehensive review on intelligent islanding detection techniques for renewable energy integrated power system,” Int. J. Energy Res., vol. 45, no. 10, pp. 14085–14116, 2021, doi: 10.1002/er.6641. [33] M. W. Altaf, M. T. Arif, S. Saha, S. N. Islam, M. E. Haque, and A. M. T. Oo, “Effective ROCOF Based Islanding Detection Technique for Different Types of Microgrid,” Conf. Rec. - IAS Annu. Meet. (IEEE Ind. Appl. Soc., vol. 2021-Octob, no. 2, pp. 1809–1821, 2021, doi: 10.1109/IAS48185.2021.9677270.
  • [34] A. G. Abd-Elkader, S. M. Saleh, and M. B. Magdi Eiteba, “A passive islanding detection strategy for multi-distributed generations,” Int. J. Electr. Power Energy Syst., vol. 99, no. November 2017, pp. 146–155, 2018, doi: 10.1016/j.ijepes.2018.01.005. [35] R. Bekhradian, M. Davarpanah, and M. Sanaye-Pasand, “Novel Approach for Secure Islanding Detection in Synchronous Generator Based Microgrids,” IEEE Trans. Power Deliv., vol. 8977, no. c, pp. 1–1, 2018, doi: 10.1109/TPWRD.2018.2869300. [36] R. Somalwar, S. G. Kadwane, and D. K. Mohanta, “Harmonics-Based Enhanced Passive Islanding Method for Grid-Connected System,” Electr. Power Components Syst., vol. 45, no. 14, pp. 1554–1563, 2017, doi: 10.1080/15325008.2017.1361485.
  • [37] J. A. Laghari, H. Mokhlis, M. Karimi, A. H. A. Bakar, and A. Shahriari, “Artificial neural network based islanding detection technique for mini hydro type distributed generation,” IET Semin. Dig., vol. 2014, no. CP659, 2014, doi: 10.1049/cp.2014.1469. [38] V. L. Merlin, R. C. Santos, A. P. Grilo, J. C. M. Vieira, D. V. Coury, and M. Oleskovicz, “A new artificial neural network based method for islanding detection of distributed generators,” Int. J. Electr. Power Energy Syst., vol. 75, pp. 139–151, 2016, doi: 10.1016/j.ijepes.2015.08.016.
  • [39] N. B. Hartmann, R. C. Dos Santos, A. P. Grilo, and J. C. M. Vieira, “Hardware Implementation and Real-Time Evaluation of an ANN-Based Algorithm for Anti-Islanding Protection of Distributed Generators,” IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 5051–5059, 2018, doi: 10.1109/TIE.2017.2767524. [40] “23. Islanding detection approach with negligible non‐detection zone based on feature extraction discrete wavelet transform and artificial neural network.pdf.”
  • [41] M. Tarafdar Hagh, H. Ebrahimian, and N. Ghadimi, “Hybrid intelligent water drop bundled wavelet neural network to solve the islanding detection by inverter-based DG,” Front. Energy, vol. 9, no. 1, pp. 75–90, 2015, doi: 10.1007/s11708-014-0337-3. [42] K. El-Arroudi, G. Joos, I. Kamwa, and D. T. McGillis, “Intelligent-based approach to islanding detection in distributed generation,” IEEE Trans. Power Deliv., vol. 22, no. 2, pp. 828–835, 2007, doi: 10.1109/TPWRD.2007.893592.
  • [43] D. Mlakic, H. R. Baghaee, and S. Nikolovski, “A Novel ANFIS-based Islanding Detection for Inverter–Interfaced Microgrids,” IEEE Trans. Smart Grid, vol. PP, no. c, p. 1, 2018, doi: 10.1109/TSG.2018.2859360.
  • [44] R. K. Patnaik and P. K. Dash, “Impact of wind farms on disturbance detection and classification in distributed generation using modified Adaline network and an adaptive neuro-fuzzy information system,” Appl. Soft Comput. J., vol. 30, pp. 549–566, 2015, doi: 10.1016/j.asoc.2015.02.009.
  • [45] B. Matic-cuka and M. Kezunovic, “Islanding Detection for Inverter-Based Distributed Generation Using Support Vector Machine Method,” IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2676–2686, 2014.
  • [46] S. K. G. Manikonda and D. N. Gaonkar, “Islanding detection method based on image classification technique using histogram of oriented gradient features,” IET Gener. Transm. Distrib., vol. 14, no. 14, pp. 2790–2799, 2020, doi: 10.1049/iet-gtd.2019.1824.
  • [47] M. Ahmadipour, H. Hizam, M. Lutfi Othman, M. A. M. Radzi, and N. Chireh, “A novel islanding detection technique using modified Slantlet transform in multi-distributed generation,” Int. J. Electr. Power Energy Syst., vol. 112, no. April, pp. 460–475, 2019, doi: 10.1016/j.ijepes.2019.05.008.
  • [48] S. Chandak, M. Mishra, S. Nayak, and P. K. Rout, “Optimal feature selection for islanding detection in distributed generation,” IET Smart Grid, vol. 1, no. 3, pp. 85–95, 2018, doi: 10.1049/iet-stg.2018.0021.
  • [49] M. Mishra and P. K. Rout, “Fast discrete s-transform and extreme learning machine based approach to islanding detection in grid-connected distributed generation,” Energy Syst., vol. 10, no. 3, pp. 757–789, 2019, doi: 10.1007/s12667-018-0285-9.
  • [50] A. Khamis, Y. Xu, Z. Y. Dong, and R. Zhang, “Faster Detection of Microgrid Islanding Events Using an Adaptive Ensemble Classifier,” IEEE Trans. Smart Grid, vol. 9, no. 3, pp. 1889–1899, 2018, doi: 10.1109/TSG.2016.2601656.
  • [51] T. S. Menezes, R. A. S. Fernandes, and D. V. Coury, “Intelligent islanding detection with grid topology adaptation and minimum non-detection zone,” Electr. Power Syst. Res., vol. 187, no. February, p. 106470, 2020, doi: 10.1016/j.epsr.2020.106470.
  • [52] M. Heidari, G. Seifossadat, and M. Razaz, “An intelligence-based islanding detection method using DWT and ANN,” Turkish J. Electr. Eng. Comput. Sci., vol. 23, no. 2, pp. 381–394, 2015, doi: 10.3906/elk-1210-107.
  • [53] E. C. Pedrino, T. Yamada, T. R. Lunardi, and J. C. de M. Vieira, “Islanding detection of distributed generation by using multi-gene genetic programming based classifier,” Appl. Soft Comput. J., vol. 74, pp. 206–215, 2019, doi: 10.1016/j.asoc.2018.10.016.
  • [54] E. Shahryari, M. Nooshyar, and B. Sobhani, “Combination of neural network and wavelet transform for islanding detection of distributed generation in a small-scale network,” Int. J. Ambient Energy, vol. 40, no. 3, pp. 263–273, 2019, doi: 10.1080/01430750.2017.1392348.
  • [55] A. Khamis, H. Shareef, A. Mohamed, and E. Bizkevelci, “Islanding detection in a distributed generation integrated power system using phase space technique and probabilistic neural network,” Neurocomputing, vol. 148, pp. 587–599, 2015, doi: 10.1016/j.neucom.2014.07.004.
  • [56] A. Khamis, H. Shareef, and A. Mohamed, “Islanding detection and load shedding scheme for radial distribution systems integrated with dispersed generations,” IET Gener. Transm. Distrib., vol. 9, no. 15, pp. 2261–2275, 2015, doi: 10.1049/iet-gtd.2015.0263. [57] Y. Bengio, “Learning Deep Architectures for AI,” Found. Trends_R Mach. Learn., vol. 2, no. 1, 2009, doi: 10.1561/2200000006.
  • [58] X. Kong, X. Xu, Z. Yan, S. Chen, H. Yang, and D. Han, “Deep learning hybrid method for islanding detection in distributed generation,” Appl. Energy, vol. 210, no. April 2017, pp. 776–785, 2018, doi: 10.1016/j.apenergy.2017.08.014. [59] A. Najar, H. K. Karegar, and S. Esmaeilbeigi, “Intelligent Islanding Detection Scheme for Microgrid Based on Deep Learning and Wavelet Transform,” 2020 10th Smart Grid Conf. SGC 2020, 2020, doi: 10.1109/SGC52076.2020.9335761.
  • [60] A. A. Abdelsalam, A. A. Salem, E. S. Oda, and A. A. Eldesouky, “Islanding Detection of Microgrid Incorporating Inverter Based DGs Using Long Short-Term Memory Network,” IEEE Access, vol. 8, pp. 106471–106486, 2020, doi: 10.1109/access.2020.3000872.
  • [61] S. B. A. Bukhari, K. K. Mehmood, A. Wadood, and H. Park, “Intelligent islanding detection of microgrids using long short-term memory networks,” Energies, vol. 14, no. 18. 2021. doi: 10.3390/en14185762. [62] A. K. Özcanlı and M. Baysal, “A novel Multi-LSTM based deep learning method for islanding detection in the microgrid,” Electr. Power Syst. Res., vol. 202, no. August 2021, 2022, doi: 10.1016/j.epsr.2021.107574.
  • [63] B. Özcanlı, Asiye Kaymaz and M. Baysal, “Islanding detection in microgrid using deep learning based on 1D CNN and CNN-LSTM networks,” Sustain. Energy, Grids Networks, p. 110456, 2022, doi: https://doi.org/10.1016/j.segan.2022.100839.
  • [64] M. O. Faruque et al., “Real-Time Simulation Technologies for Power Systems Design, Testing, and Analysis,” IEEE Power Energy Technol. Syst. J., vol. 2, no. 2, pp. 63–73, 2015, doi: 10.1109/JPETS.2015.2427370.
  • [65] S. C. Paiva, R. L. de A. Ribeiro, D. K. Alves, F. B. Costa, and T. de O. A. Rocha, “A wavelet-based hybrid islanding detection system applied for distributed generators interconnected to AC microgrids,” International Journal of Electrical Power and Energy Systems, vol. 121. 2020. doi: 10.1016/j.ijepes.2020.106032.
  • [66] R. Bakhshi-Jafarabadi, J. Sadeh, and M. Popov, “Maximum power point tracking injection method for islanding detection of grid-connected photovoltaic systems in microgrid,” IEEE Trans. Power Deliv., vol. 36, no. 1, pp. 168–179, 2021, doi: 10.1109/TPWRD.2020.2976739.
  • [67] A. Hoke, A. Nelson, B. Miller, S. Chakraborty, F. Bell, and M. Mccarty, “Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios,” no. July, p. 69, 2016.
  • [68] A. F. Hoke, A. Nelson, S. Chakraborty, F. Bell, and M. McCarty, “An Islanding Detection Test Platform for Multi-Inverter Islands Using Power HIL,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 7944–7953, 2018, doi: 10.1109/TIE.2018.2801855.
  • [69] A. YILMAZ and G. BAYRAK, “an Improved Cwt-Based Islanding Detection Method for a Developed Microgrid in Real-Time,” Mugla J. Sci. Technol., vol. 6, pp. 10–17, 2020, doi: 10.22531/muglajsci.654432.
  • [70] A. Yılmaz and G. Bayrak, “A new signal processing-based islanding detection method using pyramidal algorithm with undecimated wavelet transform for distributed generators of hydrogen energy,” Int. J. Hydrogen Energy, no. xxxx, 2022, doi: 10.1016/j.ijhydene.2022.03.114.
  • [71] P. Buduma, S. J. Pinto, and G. Panda, “Wavelet based Islanding Detection in a Three-Phase Grid Collaborative Inverter System using FPGA Platform,” India Int. Conf. Power Electron. IICPE, vol. 2018-Decem, pp. 2–7, 2018, doi: 10.1109/IICPE.2018.8709550.
  • [72] B. K. Chaitanya, A. Yadav, and M. Pazoki, “Reliable Islanding Detection Scheme for Distributed Generation Based on Pattern-Recognition,” IEEE Trans. Ind. Informatics, vol. 17, no. 8, pp. 5230–5238, 2021, doi: 10.1109/TII.2020.3029675.
  • [73] Q. Cui, K. El-Arroudi, and G. Joós, “Real-time hardware-in-the-loop simulation for islanding detection schemes in hybrid distributed generation systems,” IET Gener. Transm. Distrib., vol. 11, no. 12, pp. 3050–3056, 2017, doi: 10.1049/iet-gtd.2016.1562.
  • [74] J. Ke, Z. Zhengxuan, Y. Zhe, F. Yu, B. Tianshu, and Z. Jiankang, “Intelligent islanding detection method for photovoltaic power system based on Adaboost algorithm,” IET Gener. Transm. Distrib., vol. 14, no. 18, pp. 3630–3640, 2020, doi: 10.1049/iet-gtd.2018.6841.
  • [75] P. Kumar, V. Kumar, and R. Pratap, “FPGA implementation of an Islanding detection technique for microgrid using periodic maxima of superimposed voltage components,” IET Gener. Transm. Distrib., vol. 14, no. 9, pp. 1673–1683, 2020, doi: 10.1049/iet-gtd.2018.5914.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Asiye Kaymaz Özcanlı 0000-0001-5536-5371

Erken Görünüm Tarihi 21 Haziran 2023
Yayımlanma Tarihi 27 Eylül 2023
Gönderilme Tarihi 27 Ekim 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 3

Kaynak Göster

APA Kaymaz Özcanlı, A. (2023). Şebekeye Bağlı Dağıtık Üretim Sistemleri için Akıllı Ada Çalışma Tespit Yöntemlerinin İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 11(3), 592-612. https://doi.org/10.29109/gujsc.1195562

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526