Araştırma Makalesi
BibTex RIS Kaynak Göster

Ardışık Düşük Doz -Işınlarının c-Si Güneş Hücresi Üzerine Etkisinin İncelenmesi

Yıl 2023, Cilt: 11 Sayı: 3, 582 - 591, 27.09.2023
https://doi.org/10.29109/gujsc.1199922

Öz

Çalışmada, ardışık düşük doz gama () ışınlarının mono-kristal Silisyum (c-Si) güneş hücresi üzerine etkisi incelendi. ışını kaynağı olarak 60Co kullanılmıştır. c-Si güneş hücresinin performansı, radyasyon öncesi ve sonrası karanlık ve AM1.5G ışık koşullarında alınan akım-voltaj (I-V), dışsal kuantum verimlilik (EQE), kapasitans-voltaj (C-V) ve iletkenlik-voltaj (G/-V) ölçümleri ile belirlenmiştir. Deneysel sonuçlar, radyasyona maruz kaldıktan sonra hücrelerin idealite faktörlerinin arttığını göstermektedir. Doz miktarı arttıkça kısa devre akımı (Isc) ve verim () değerleri azalırken, açık devre voltajı (Voc) ve doluluk faktörü (FF) değerleri ise yaklaşık sabit kalmaktadır. Dışsal kuantum verimlilik (EQE) ölçümleri, güneş hücresinde oluşan hasarın taban katmanında oluştuğu gösterirken, hücrede oluşan bu hasarın azınlık yük taşıyıcısı yarı ömründe oluşan azalma ile ilişkilendirilmektedir. Ayrıca, aygıt performansındaki değişim C-V ve G/-V ölçümleri ile de doğrulanmıştır. Deneysel sonuçlar, radyasyon öncesi ve sonrası karşılaştırılarak tartışılmıştır.

Teşekkür

Yazar, güneş hücresi karakterizasyonları için Orta Doğu Teknik Üniversitesi Güneş Enerjisi Araştırma ve Uygulamaları Merkezi'ne (GÜNAM) ve ışınlama tesisi için Akdeniz Üniversitesi Nükleer Araştırma ve Uygulama Merkezi'ne (NUBA) teşekkür eder.

Kaynakça

  • [1] A. Hamache, N. Sengouga, A. Meftah, M. Henini, Modeling the effect of 1MeV electron irradiation on the performance of n+–p–p+ silicon space solar cells, Radiat. Phys. Chem. 123 (2016) 103–108. https://doi.org/10.1016/j.radphyschem.2016.02.025.
  • [2] D. Nikolić, A. Vasić-Milovanović, M. Obrenović, E. Dolićanin, Effects of successive gamma and neutron irradiation on solar cells, J. Optoelectron. Adv. Mater. 17 (2015) 351–356.
  • [3] C. Pellegrino, A. Gagliardi, C.G. Zimmermann, Difference in space-charge recombination of proton and electron irradiated GaAs solar cells, Prog. Photovoltaics Res. Appl. 27 (2019) 379–390. https://doi.org/10.1002/pip.3100.
  • [4] S.-S. Yang, X. Gao, Y.-F. Wang, Z.-Z. Feng, Displacement Damage Characterization of Electron Radiation in Triple-Junction GaAs Solar Cells, J. Spacecr. Rockets. 48 (2011) 23–26. https://doi.org/10.2514/1.48873.
  • [5] Y. Zhang, C. Qi, T. Wang, G. Ma, H.S. Tsai, C. Liu, J. Zhou, Y. Wei, H. Li, L. Xiao, Y. Ma, D. Wang, C. Tang, J. Li, Z. Wu, M. Huo, Electron Irradiation Effects and Defects Analysis of the Inverted Metamorphic Four-Junction Solar Cells, IEEE J. Photovoltaics. 10 (2020) 1712–1720. https://doi.org/10.1109/JPHOTOV.2020.3025442.
  • [6] A. Vasić, P. Osmokrović, M. Vujisić, Ć. Dolićanin, K. Stanković, Possibilities of improvement of silicon solar cell characteristics by lowering noise, J. Optoelectron. Adv. Mater. 10 (2008) 2800–2804.
  • [7] K. Ali, S.A. Khan, M.Z. MatJafri, Improved radiation resistant properties of electron irradiated c-Si solar cells, Radiat. Phys. Chem. 125 (2016) 220–226. https://doi.org/10.1016/j.radphyschem.2016.04.015.
  • [8] D. Nikolić, K. Stanković, L. Timotijević, Z. Rajović, M. Vujisić, Comparative study of gamma radiation effects on solar cells, photodiodes, and phototransistors, Int. J. Photoenergy. 2013 (2013) 843174. https://doi.org/10.1155/2013/843174.
  • [9] P.S. Bhat, A. Rao, S. Krishnan, G. Sanjeev, S.E. Puthanveettil, A study on the variation of c-Si solar cell parameters under 8 MeV electron irradiation, Sol. Energy Mater. Sol. Cells. 120 (2014) 191–196. https://doi.org/10.1016/j.solmat.2013.08.043.
  • [10] G. Yan, J. ling Wang, J. Liu, Y. yu Liu, R. Wu, R. Wang, Electroluminescence analysis of VOC degradation of individual subcell in GaInP/GaAs/Ge space solar cells irradiated by 1.0 MeV electrons, J. Lumin. 219 (2020) 116905. https://doi.org/10.1016/j.jlumin.2019.116905.
  • [11] M.R. Zdravković, A.I. Vasić, R.L. Radosavljević, M.L. Vujisić, P. V. Osmokrović, Influence of radiation on the properties of solar cells, Nucl. Technol. Radiat. Prot. 26 (2011) 158–163. https://doi.org/10.2298/NTRP1102158Z.
  • [12] T. Hisamatsu, O. Kawasaki, S. Matsuda, T. Nakao, Y. Wakow, Radiation degradation of large fluence irradiated space silicon solar cells, Sol. Energy Mater. Sol. Cells. 50 (1998) 331–338. https://doi.org/10.1016/S0927-0248(97)00163-3.
  • [13] X.B. Shen, A. Aierken, M. Heini, J.H. Mo, Q.Q. Lei, X.F. Zhao, M. Sailai, Y. Xu, M. Tan, Y.Y. Wu, S.L. Lu, Y.D. Li, Q. Guo, Degradation analysis of 1 MeV electron and 3 MeV proton irradiated InGaAs single junction solar cell, AIP Adv. 9 (2019) 075205. https://doi.org/10.1063/1.5094472.
  • [14] C. Weiss, S. Park, J. Lefèvre, B. Boizot, C. Mohr, O. Cavani, S. Picard, R. Kurstjens, T. Niewelt, S. Janz, Electron and proton irradiation effect on the minority carrier lifetime in SiC passivated p-doped Ge wafers for space photovoltaics, Sol. Energy Mater. Sol. Cells. 209 (2020) 110430. https://doi.org/10.1016/j.solmat.2020.110430.
  • [15] J.R. Hauser, S.E. Kerns, Circuit related issues due to radiation in hostile environments, J. Electron. Mater. 19 (1990) 671–688. https://doi.org/10.1007/BF02655236.
  • [16] F. Es, M. Kulakci, R. Turan, An Alternative Metal-Assisted Etching Route for Texturing Silicon Wafers for Solar Cell Applications, IEEE J. Photovoltaics. 6 (2016) 440–446. https://doi.org/10.1109/JPHOTOV.2016.2520207.
  • [17] M. Kulakci, F. Es, B. Ozdemir, H.E. Unalan, R. Turan, Application of si nanowires fabricated by metal-assisted etching to crystalline si solar cells, IEEE J. Photovoltaics. 3 (2013) 548–553. https://doi.org/10.1109/JPHOTOV.2012.2228300.
  • [18] Y. Zhang, H. Zhang, B. Yu, W. Wang, R. Hou, B. Chen, Q. Xu, Y. Zhou, G. Qin, Gamma-ray irradiation hardness of arrayed silicon microhole-based radial p-n junction solar cells, J. Phys. D. Appl. Phys. 47 (2014) 065101. https://doi.org/10.1088/0022-3727/47/6/065101.
  • [19] D.M. Tobnaghi, A. Rahnamaei, M. Vajdi, Experimental Study of Gamma Radiation Effects on the Electrical Characteristics of Silicon Solar Cells, Int. J. Electrochem. Sci. 9 (2014) 2824–2831.
  • [20] A.M. Saad, Effect of cobalt 60 and 1 MeV electron irradiation on silicon photodiodes/solar cells., Can. J. Phys. 80 (2002) 1591–1599. https://doi.org/10.1139/p02-037.
  • [21] V. Aubry, F. Meyer, Schottky diodes with high series resistance: Limitations of forward I-V methods, J. Appl. Phys. 76 (1994) 7973–7984. https://doi.org/10.1063/1.357909.
  • [22] M. Ashry, S. Fares, Diffusion length analysis and measurement in the base region of photodiodes, J. Phys. Chem. Solids. 64 (2003) 2429–2431. https://doi.org/10.1016/S0022-3697(03)00285-3.
  • [23] J. Kuendig, M. Goetz, A. Shah, L. Gerlach, E. Fernandez, Thin film silicon solar cells for space applications: Study of proton irradiation and thermal annealing effects on the characteristics of solar cells and individual layers, Sol. Energy Mater. Sol. Cells. 79 (2003) 425–438. https://doi.org/10.1016/S0927-0248(02)00486-5.
  • [24] D.M. Tobnaghi, R. Madatov, Recovery in the electrical parameters of the aging silicon solar cells by annealing, J. Optoelectron. Adv. Mater. 16 (2014) 764–768.
  • [25] Y. Morita, T. Ohshima, I. Nashiyama, Y. Yamamoto, O. Kawasaki, S. Matsuda, Anomalous degradation in silicon solar cells subjected to high-fluence proton and electron irradiations, J. Appl. Phys. 81 (1997) 6491–6493. https://doi.org/10.1063/1.364437.
  • [26] A. Vasić, M. Vujisić, B. Lončar, P. Osmokrović, Aging of solar cells under working conditions, J. Optoelectron. Adv. Mater. 9 (2007) 1843–1846.
  • [27] D. Nikolic, A. Vasic-Milovanovic, Comparative study of gamma and neutron irradiation effects on the silicon solar cells parameters, FME Trans. 44 (2016) 99–105. https://doi.org/10.5937/fmet1601099N.

Investigation of the Effect of Successive Low-Dose Gamma-Rays on c-Si Solar Cell

Yıl 2023, Cilt: 11 Sayı: 3, 582 - 591, 27.09.2023
https://doi.org/10.29109/gujsc.1199922

Öz

In the study, the effect of sequential low-dose gamma () rays on mono-crystalline Silicon (c-Si) solar cells was investigated. 60Co was used as the ray source. Performance of c-Si solar cells was determined via dark and AM1.5G light current-voltage (I-V), external quantum efficiency (EQE), capacitance-voltage (C-V) and conductivity-voltage (G/-V) measurements before and after irradiation. Experimental results show that ideality factors of cells increase after exposure to radiation. As the dose increased, the short-circuit current (Isc) and efficiency () values decreased, while the open-circuit voltage (Voc) and fill factor (FF) values remained approximately constant. External quantum efficiency (EQE) measurements show that damage has occurred in base layer of the solar cell, while this damage is associated with a reduction in minority carrier lifetime. In addition, the change in device performance was confirmed by C-V and G/-V measurements. Experimental results are discussed by comparing before and after radiation.

Kaynakça

  • [1] A. Hamache, N. Sengouga, A. Meftah, M. Henini, Modeling the effect of 1MeV electron irradiation on the performance of n+–p–p+ silicon space solar cells, Radiat. Phys. Chem. 123 (2016) 103–108. https://doi.org/10.1016/j.radphyschem.2016.02.025.
  • [2] D. Nikolić, A. Vasić-Milovanović, M. Obrenović, E. Dolićanin, Effects of successive gamma and neutron irradiation on solar cells, J. Optoelectron. Adv. Mater. 17 (2015) 351–356.
  • [3] C. Pellegrino, A. Gagliardi, C.G. Zimmermann, Difference in space-charge recombination of proton and electron irradiated GaAs solar cells, Prog. Photovoltaics Res. Appl. 27 (2019) 379–390. https://doi.org/10.1002/pip.3100.
  • [4] S.-S. Yang, X. Gao, Y.-F. Wang, Z.-Z. Feng, Displacement Damage Characterization of Electron Radiation in Triple-Junction GaAs Solar Cells, J. Spacecr. Rockets. 48 (2011) 23–26. https://doi.org/10.2514/1.48873.
  • [5] Y. Zhang, C. Qi, T. Wang, G. Ma, H.S. Tsai, C. Liu, J. Zhou, Y. Wei, H. Li, L. Xiao, Y. Ma, D. Wang, C. Tang, J. Li, Z. Wu, M. Huo, Electron Irradiation Effects and Defects Analysis of the Inverted Metamorphic Four-Junction Solar Cells, IEEE J. Photovoltaics. 10 (2020) 1712–1720. https://doi.org/10.1109/JPHOTOV.2020.3025442.
  • [6] A. Vasić, P. Osmokrović, M. Vujisić, Ć. Dolićanin, K. Stanković, Possibilities of improvement of silicon solar cell characteristics by lowering noise, J. Optoelectron. Adv. Mater. 10 (2008) 2800–2804.
  • [7] K. Ali, S.A. Khan, M.Z. MatJafri, Improved radiation resistant properties of electron irradiated c-Si solar cells, Radiat. Phys. Chem. 125 (2016) 220–226. https://doi.org/10.1016/j.radphyschem.2016.04.015.
  • [8] D. Nikolić, K. Stanković, L. Timotijević, Z. Rajović, M. Vujisić, Comparative study of gamma radiation effects on solar cells, photodiodes, and phototransistors, Int. J. Photoenergy. 2013 (2013) 843174. https://doi.org/10.1155/2013/843174.
  • [9] P.S. Bhat, A. Rao, S. Krishnan, G. Sanjeev, S.E. Puthanveettil, A study on the variation of c-Si solar cell parameters under 8 MeV electron irradiation, Sol. Energy Mater. Sol. Cells. 120 (2014) 191–196. https://doi.org/10.1016/j.solmat.2013.08.043.
  • [10] G. Yan, J. ling Wang, J. Liu, Y. yu Liu, R. Wu, R. Wang, Electroluminescence analysis of VOC degradation of individual subcell in GaInP/GaAs/Ge space solar cells irradiated by 1.0 MeV electrons, J. Lumin. 219 (2020) 116905. https://doi.org/10.1016/j.jlumin.2019.116905.
  • [11] M.R. Zdravković, A.I. Vasić, R.L. Radosavljević, M.L. Vujisić, P. V. Osmokrović, Influence of radiation on the properties of solar cells, Nucl. Technol. Radiat. Prot. 26 (2011) 158–163. https://doi.org/10.2298/NTRP1102158Z.
  • [12] T. Hisamatsu, O. Kawasaki, S. Matsuda, T. Nakao, Y. Wakow, Radiation degradation of large fluence irradiated space silicon solar cells, Sol. Energy Mater. Sol. Cells. 50 (1998) 331–338. https://doi.org/10.1016/S0927-0248(97)00163-3.
  • [13] X.B. Shen, A. Aierken, M. Heini, J.H. Mo, Q.Q. Lei, X.F. Zhao, M. Sailai, Y. Xu, M. Tan, Y.Y. Wu, S.L. Lu, Y.D. Li, Q. Guo, Degradation analysis of 1 MeV electron and 3 MeV proton irradiated InGaAs single junction solar cell, AIP Adv. 9 (2019) 075205. https://doi.org/10.1063/1.5094472.
  • [14] C. Weiss, S. Park, J. Lefèvre, B. Boizot, C. Mohr, O. Cavani, S. Picard, R. Kurstjens, T. Niewelt, S. Janz, Electron and proton irradiation effect on the minority carrier lifetime in SiC passivated p-doped Ge wafers for space photovoltaics, Sol. Energy Mater. Sol. Cells. 209 (2020) 110430. https://doi.org/10.1016/j.solmat.2020.110430.
  • [15] J.R. Hauser, S.E. Kerns, Circuit related issues due to radiation in hostile environments, J. Electron. Mater. 19 (1990) 671–688. https://doi.org/10.1007/BF02655236.
  • [16] F. Es, M. Kulakci, R. Turan, An Alternative Metal-Assisted Etching Route for Texturing Silicon Wafers for Solar Cell Applications, IEEE J. Photovoltaics. 6 (2016) 440–446. https://doi.org/10.1109/JPHOTOV.2016.2520207.
  • [17] M. Kulakci, F. Es, B. Ozdemir, H.E. Unalan, R. Turan, Application of si nanowires fabricated by metal-assisted etching to crystalline si solar cells, IEEE J. Photovoltaics. 3 (2013) 548–553. https://doi.org/10.1109/JPHOTOV.2012.2228300.
  • [18] Y. Zhang, H. Zhang, B. Yu, W. Wang, R. Hou, B. Chen, Q. Xu, Y. Zhou, G. Qin, Gamma-ray irradiation hardness of arrayed silicon microhole-based radial p-n junction solar cells, J. Phys. D. Appl. Phys. 47 (2014) 065101. https://doi.org/10.1088/0022-3727/47/6/065101.
  • [19] D.M. Tobnaghi, A. Rahnamaei, M. Vajdi, Experimental Study of Gamma Radiation Effects on the Electrical Characteristics of Silicon Solar Cells, Int. J. Electrochem. Sci. 9 (2014) 2824–2831.
  • [20] A.M. Saad, Effect of cobalt 60 and 1 MeV electron irradiation on silicon photodiodes/solar cells., Can. J. Phys. 80 (2002) 1591–1599. https://doi.org/10.1139/p02-037.
  • [21] V. Aubry, F. Meyer, Schottky diodes with high series resistance: Limitations of forward I-V methods, J. Appl. Phys. 76 (1994) 7973–7984. https://doi.org/10.1063/1.357909.
  • [22] M. Ashry, S. Fares, Diffusion length analysis and measurement in the base region of photodiodes, J. Phys. Chem. Solids. 64 (2003) 2429–2431. https://doi.org/10.1016/S0022-3697(03)00285-3.
  • [23] J. Kuendig, M. Goetz, A. Shah, L. Gerlach, E. Fernandez, Thin film silicon solar cells for space applications: Study of proton irradiation and thermal annealing effects on the characteristics of solar cells and individual layers, Sol. Energy Mater. Sol. Cells. 79 (2003) 425–438. https://doi.org/10.1016/S0927-0248(02)00486-5.
  • [24] D.M. Tobnaghi, R. Madatov, Recovery in the electrical parameters of the aging silicon solar cells by annealing, J. Optoelectron. Adv. Mater. 16 (2014) 764–768.
  • [25] Y. Morita, T. Ohshima, I. Nashiyama, Y. Yamamoto, O. Kawasaki, S. Matsuda, Anomalous degradation in silicon solar cells subjected to high-fluence proton and electron irradiations, J. Appl. Phys. 81 (1997) 6491–6493. https://doi.org/10.1063/1.364437.
  • [26] A. Vasić, M. Vujisić, B. Lončar, P. Osmokrović, Aging of solar cells under working conditions, J. Optoelectron. Adv. Mater. 9 (2007) 1843–1846.
  • [27] D. Nikolic, A. Vasic-Milovanovic, Comparative study of gamma and neutron irradiation effects on the silicon solar cells parameters, FME Trans. 44 (2016) 99–105. https://doi.org/10.5937/fmet1601099N.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

İsmail Kabaçelik 0000-0003-4117-7710

Erken Görünüm Tarihi 21 Haziran 2023
Yayımlanma Tarihi 27 Eylül 2023
Gönderilme Tarihi 5 Kasım 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 3

Kaynak Göster

APA Kabaçelik, İ. (2023). Ardışık Düşük Doz -Işınlarının c-Si Güneş Hücresi Üzerine Etkisinin İncelenmesi. Gazi University Journal of Science Part C: Design and Technology, 11(3), 582-591. https://doi.org/10.29109/gujsc.1199922

                                     16168      16167     16166     21432        logo.png


    e-ISSN:2147-9526