Araştırma Makalesi
BibTex RIS Kaynak Göster

Plaka Kanatlı Isı Dağıtıcı Termal Performansının Deneysel Olarak Zorlanmış Konveksiyonda İncelenmesi

Yıl 2023, Cilt: 11 Sayı: 4, 951 - 965, 28.12.2023
https://doi.org/10.29109/gujsc.1280118

Öz

Bu çalışmada, plaka kanatlara (PID) sahip ısı dağıtıcının karşılaştırmalı olarak kanatsız düz ısı dağıtıcı (DID) ile termal performansı 30 ℃ ortam sıcaklığında, 33-66-99 W ısıl güçlerinde ve 2000-16000 Reynolds sayısı aralıklarında deneysel olarak incelenmiştir.
Güç ortalaması dikkate alınarak plaka model düze göre yüzey sıcaklıklarında 57 ℃ ve eklem sıcaklıklarında 30.5 ℃’lik avantaj sağlamıştır. Nu sayısında plakalı model düze göre güçler için sırasıyla %79, %35 ve %38 daha yüksek olup buradan bariz olarak 33 W’ta oldukça iyi bir ısı transfer performansı sergilemiştir. Termal dirençte plakalı model düze göre güçler için sırasıyla 0.61, 0.50 ve 0.39 K/W daha düşük değerlere sahip olup güç artışıyla azalan bir eğilim göstermiştir. Plakalı modelin basınç kaybı düze göre güçler için sırasıyla 0.88, 0.75 ve 1.13 Pa yüksek gerçekleşmiştir. Basınç kaybındaki bu küçük farkların, plakalı modelin akışa paralel kanatlara sahip olmasının payı büyüktür. THP’de ise plakalı model düze göre güçler için sırasıyla %40, %10 ve %10 avantaj sağlamış ve özellikle 33 W için bariz yüksek bir performans sergilemiştir. Güç artışıyla THP’deki plakalı modelin avantajı azalmıştır.

Destekleyen Kurum

Destekleyen Kurum bulunmamaktadır.

Proje Numarası

yok

Teşekkür

yok

Kaynakça

  • [1] Khattak Z, Ali HM., Air cooled heat sink geometries subjected to forced flow: A critical review, International Journal of Heat and Mass Transfer ,130 (2019) 141-161.
  • [2] Lı, H.Y., Chao, S.M., Measurement of performance of plate-fin heat sinks with cross flow cooling, International Journal of Heat and Mass Transfer, 52.13-14 (2009) 2949-2955.
  • [3] Karabulut, K., Alnak, D.E., Değişik şekilde tasarlanan ısıtılmış yüzeylerin hava jeti çarpmalı soğutulmasının araştırılması, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26 No.1 (2020) 88-98.
  • [4] Özdilli Ö, Şevik S., Effect of channel and fin geometries on a trapeze plate-fin heat sink performance, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235.5 (2021) 1326-1336.
  • [5] Barış, A., Bayer, Ö., Experimental and numerical study on heat transfer performance of square, cylindrical and plate heat sinks in external transition flow regime, Isı Bilimi ve Tekniği Dergisi, 39 (2019) 151-161.
  • [6] Chingulpitak, S., Ahn, H. S., Asirvatham, L. G., Wongwises, S., Fluid flow and heat transfer characteristics of heat sinks with laterally perforated plate fins, International Journal of Heat and Mass Transfer, 138 (2019) 293-303.
  • [7] Khan, W., Culham, J., and Yovanovich, M., The Role of Fin Geometry in Heat Sink Performance, ASME Journal of Electronic Packaging, 128 No. 4 (2006) 324–330.
  • [8] Li, H. Y., Tsai, G. L., Chao, S. M., Yen, Y. F., Measurement of thermal and hydraulic performance of a plate-fin heat sink with a shield, Experimental thermal and fluid science, 42 (2012) 71-78.
  • [9] Yu, X., Feng, J., Feng, Q., Wang, Q., Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink, Applied thermal engineering, 25 No.2-3 (2005) 173-182.
  • [10] Abuşka, M., Çorumlu V., A comparative experimental thermal performance analysis of conical pin fin heat sink with staggered and modified staggered layout under forced convection, Thermal Science and Engineering Progress, 37 (2023) 101560..
  • [11] Çiçek, B., Ürün, E. & Şahin, N. (2023). Experimental and Numerical Analysis of an Innovative High Power LEDs Thermal Management System, based on Heat Sink- Heat Pipe Design. Gazi University Journal of Science Part C: Design and Technology, 11 (3), 824-836. DOI: 10.29109/gujsc.1315135.
  • [12] Kim, D. K., Jung, J., & Kim, S. J. (2010). Thermal optimization of plate-fin heat sinks with variable fin thickness. International Journal of Heat and Mass Transfer, 53(25-26), 5988-5995.
  • [13] Gupta, A., Kumar, M., & Patil, A. K. (2019). Enhanced heat transfer in plate fin heat sink with dimples and protrusions. Heat and Mass Transfer, 55(8), 2247-2260.
  • [14] Huang, C. H., & Tung, P. W. (2020). Numerical and experimental studies on an optimum Fin design problem to determine the deformed wavy-shaped heat sinks. International Journal of Thermal Sciences, 151, 106282.
  • [15] Ahmed, H. E. (2016). Optimization of thermal design of ribbed flat-plate fin heat sink. Applied Thermal Engineering, 102, 1422-1432.
  • [16] Karathanassis, I. K., Papanicolaou, E., Belessiotis, V., & Bergeles, G. C. (2015). Experimental and numerical evaluation of an elongated plate-fin heat sink with three sections of stepwise varying channel width. International Journal of Heat and Mass Transfer, 84, 16-34.
  • [17] Hussain, A. A., Freegah, B., Khalaf, B. S., & Towsyfyan, H. (2019). Numerical investigation of heat transfer enhancement in plate-fin heat sinks: Effect of flow direction and fillet profile. Case Studies in Thermal Engineering, 13, 100388.
  • [18] Tariq, A., Altaf, K., Ahmad, S. W., Hussain, G., & Ratlamwala, T. A. H. (2021). Comparative numerical and experimental analysis of thermal and hydraulic performance of improved plate fin heat sinks. Applied Thermal Engineering, 182, 115949.
  • [19] Richard Culham, J., Khan, W. A., Michael Yovanovich, M., & Muzychka, Y. S. (2007). The influence of material properties and spreading resistance in the thermal design of plate fin heat sinks.
  • [20] Kanargi, B., Lee, P. S., & Yap, C. (2018). A numerical and experimental investigation of heat transfer and fluid flow characteristics of an air-cooled oblique-finned heat sink. International Journal of Heat and Mass Transfer, 116, 393-416.
  • [21] Nilpueng, K., Ahn, H. S., Jerng, D. W., & Wongwises, S. (2019). Heat transfer and flow characteristics of sinusoidal wavy plate fin heat sink with and without crosscut flow control. International Journal of Heat and Mass Transfer, 137, 565-572.
  • [22] Chingulpitak, S., Chimres, N., Nilpueng, K., & Wongwises, S. (2016). Experimental and numerical investigations of heat transfer and flow characteristics of cross-cut heat sinks. International Journal of Heat and Mass Transfer, 102, 142-153.
  • [23] Holman JP., Experimental Methods for Engineers, 8th ed., New York, McGraw-Hill, (2012).
  • [24] Jonsson, H., & Moshfegh, B. (2001). Modeling of the thermal and hydraulic performance of plate fin, strip fin, and pin fin heat sinks-influence of flow bypass. IEEE Transactions on Components and Packaging Technologies, 24(2), 142-149.

Experimental Investigation of Plate Fin Heat Sink Thermal Performance in Forced Convection

Yıl 2023, Cilt: 11 Sayı: 4, 951 - 965, 28.12.2023
https://doi.org/10.29109/gujsc.1280118

Öz

In this study, the thermal performance of the plate type fin (PID) heat spreader with the finless flat heat spreader (DID) was experimentally investigated at 30℃ ambient temperature, 33-66-99 W thermal powers and 2000-16000 Reynolds number ranges.
Considering the average powers, the plate model has an advantage of 57 ℃ at surface temperature and 30.5 ℃ at junction temperature, compared to flat one. The plate model in Nu number is 79%, 35% and 38% higher for the powers, respectively, compared to the flat model, and it clearly showed a very good heat transfer performance at 33 W. In thermal resistance, the plate model had lower values of 0.61, 0.50 and 0.39 K/W for the powers, respectively, compared to the flat, and showed a decreasing trend with the increase in power. The pressure drop of the plate model was 0.88, 0.75 and 1.13 Pa higher for the powers compared to the flat one, respectively. These small differences in pressure drop are due to the fact that the plate model has fins parallel to the flow. In THP, the plate model provided a 40%, 10% and 10% advantage for the powers, respectively, compared to the flat one, and showed a significantly higher performance, especially for 33 W. With the increase in power, the advantage of the plate model in THP decreased.

Proje Numarası

yok

Kaynakça

  • [1] Khattak Z, Ali HM., Air cooled heat sink geometries subjected to forced flow: A critical review, International Journal of Heat and Mass Transfer ,130 (2019) 141-161.
  • [2] Lı, H.Y., Chao, S.M., Measurement of performance of plate-fin heat sinks with cross flow cooling, International Journal of Heat and Mass Transfer, 52.13-14 (2009) 2949-2955.
  • [3] Karabulut, K., Alnak, D.E., Değişik şekilde tasarlanan ısıtılmış yüzeylerin hava jeti çarpmalı soğutulmasının araştırılması, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26 No.1 (2020) 88-98.
  • [4] Özdilli Ö, Şevik S., Effect of channel and fin geometries on a trapeze plate-fin heat sink performance, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235.5 (2021) 1326-1336.
  • [5] Barış, A., Bayer, Ö., Experimental and numerical study on heat transfer performance of square, cylindrical and plate heat sinks in external transition flow regime, Isı Bilimi ve Tekniği Dergisi, 39 (2019) 151-161.
  • [6] Chingulpitak, S., Ahn, H. S., Asirvatham, L. G., Wongwises, S., Fluid flow and heat transfer characteristics of heat sinks with laterally perforated plate fins, International Journal of Heat and Mass Transfer, 138 (2019) 293-303.
  • [7] Khan, W., Culham, J., and Yovanovich, M., The Role of Fin Geometry in Heat Sink Performance, ASME Journal of Electronic Packaging, 128 No. 4 (2006) 324–330.
  • [8] Li, H. Y., Tsai, G. L., Chao, S. M., Yen, Y. F., Measurement of thermal and hydraulic performance of a plate-fin heat sink with a shield, Experimental thermal and fluid science, 42 (2012) 71-78.
  • [9] Yu, X., Feng, J., Feng, Q., Wang, Q., Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink, Applied thermal engineering, 25 No.2-3 (2005) 173-182.
  • [10] Abuşka, M., Çorumlu V., A comparative experimental thermal performance analysis of conical pin fin heat sink with staggered and modified staggered layout under forced convection, Thermal Science and Engineering Progress, 37 (2023) 101560..
  • [11] Çiçek, B., Ürün, E. & Şahin, N. (2023). Experimental and Numerical Analysis of an Innovative High Power LEDs Thermal Management System, based on Heat Sink- Heat Pipe Design. Gazi University Journal of Science Part C: Design and Technology, 11 (3), 824-836. DOI: 10.29109/gujsc.1315135.
  • [12] Kim, D. K., Jung, J., & Kim, S. J. (2010). Thermal optimization of plate-fin heat sinks with variable fin thickness. International Journal of Heat and Mass Transfer, 53(25-26), 5988-5995.
  • [13] Gupta, A., Kumar, M., & Patil, A. K. (2019). Enhanced heat transfer in plate fin heat sink with dimples and protrusions. Heat and Mass Transfer, 55(8), 2247-2260.
  • [14] Huang, C. H., & Tung, P. W. (2020). Numerical and experimental studies on an optimum Fin design problem to determine the deformed wavy-shaped heat sinks. International Journal of Thermal Sciences, 151, 106282.
  • [15] Ahmed, H. E. (2016). Optimization of thermal design of ribbed flat-plate fin heat sink. Applied Thermal Engineering, 102, 1422-1432.
  • [16] Karathanassis, I. K., Papanicolaou, E., Belessiotis, V., & Bergeles, G. C. (2015). Experimental and numerical evaluation of an elongated plate-fin heat sink with three sections of stepwise varying channel width. International Journal of Heat and Mass Transfer, 84, 16-34.
  • [17] Hussain, A. A., Freegah, B., Khalaf, B. S., & Towsyfyan, H. (2019). Numerical investigation of heat transfer enhancement in plate-fin heat sinks: Effect of flow direction and fillet profile. Case Studies in Thermal Engineering, 13, 100388.
  • [18] Tariq, A., Altaf, K., Ahmad, S. W., Hussain, G., & Ratlamwala, T. A. H. (2021). Comparative numerical and experimental analysis of thermal and hydraulic performance of improved plate fin heat sinks. Applied Thermal Engineering, 182, 115949.
  • [19] Richard Culham, J., Khan, W. A., Michael Yovanovich, M., & Muzychka, Y. S. (2007). The influence of material properties and spreading resistance in the thermal design of plate fin heat sinks.
  • [20] Kanargi, B., Lee, P. S., & Yap, C. (2018). A numerical and experimental investigation of heat transfer and fluid flow characteristics of an air-cooled oblique-finned heat sink. International Journal of Heat and Mass Transfer, 116, 393-416.
  • [21] Nilpueng, K., Ahn, H. S., Jerng, D. W., & Wongwises, S. (2019). Heat transfer and flow characteristics of sinusoidal wavy plate fin heat sink with and without crosscut flow control. International Journal of Heat and Mass Transfer, 137, 565-572.
  • [22] Chingulpitak, S., Chimres, N., Nilpueng, K., & Wongwises, S. (2016). Experimental and numerical investigations of heat transfer and flow characteristics of cross-cut heat sinks. International Journal of Heat and Mass Transfer, 102, 142-153.
  • [23] Holman JP., Experimental Methods for Engineers, 8th ed., New York, McGraw-Hill, (2012).
  • [24] Jonsson, H., & Moshfegh, B. (2001). Modeling of the thermal and hydraulic performance of plate fin, strip fin, and pin fin heat sinks-influence of flow bypass. IEEE Transactions on Components and Packaging Technologies, 24(2), 142-149.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Vahit Çorumlu 0000-0003-2838-6497

Mesut Abuşka 0000-0003-2686-9786

Proje Numarası yok
Erken Görünüm Tarihi 4 Kasım 2023
Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 10 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 4

Kaynak Göster

APA Çorumlu, V., & Abuşka, M. (2023). Plaka Kanatlı Isı Dağıtıcı Termal Performansının Deneysel Olarak Zorlanmış Konveksiyonda İncelenmesi. Gazi University Journal of Science Part C: Design and Technology, 11(4), 951-965. https://doi.org/10.29109/gujsc.1280118

                                     16168      16167     16166     21432        logo.png


    e-ISSN:2147-9526