Yıl 2023,
Cilt: 11 Sayı: 4, 1081 - 1091, 28.12.2023
Nuriye Nur Kaya
,
Cengiz Eldem
,
İhsan Toktas
Proje Numarası
FDK-2022-8066
Kaynakça
- [1] X. Yu, J. Zhou, H. Liang, Z. Jiang, L. Wu, Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Prog Mater Sci. 94 (2018) 114–173.
- [2] M. Xu, Z. Xu, Z. Zhang, H. Lei, Y. Bai, D. Fang, Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies, Int J Mech Sci.159 (2019) 43-57.
- [3] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog Mater Sci. 46 (2001) 559–632.
- [4] K.E. Evans, A. Alderson, Auxetic Materials: Functional Materials and Structures from Lateral Thinking!, Advanced Materials. 12 (2000) 617–628.
- [5] C. Huang, L. Chen, Negative Poisson’s Ratio in Modern Functional Materials, Advanced Materials. 28 (2016) 8079–8096.
- [6] A. Alderson, K.L. Alderson, Auxetic materials, Proc Inst Mech Eng G J Aerosp Eng. 221 (2007) 565–575.
- [7] R. Gatt, L. Mizzi, J.I. Azzopardi, K.M. Azzopardi, D. Attard, A. Casha, J. Briffa, J.N. Grima, Hierarchical Auxetic Mechanical Metamaterials, Sci Rep. 5 (2015) 8395.
- [8] C. Qi, F. Jiang, A. Remennikov, L.-Z. Pei, J. Liu, J.-S. Wang, X.-W. Liao, S. Yang, Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs, Compos B Eng. 197 (2020) 108117.
- [9] L. Yang, O. Harrysson, H. West, D. Cormier, Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing, Int J Solids Struct. 69–70 (2015) 475–490.
- [10] C. Qi, F. Jiang, S. Yang, A. Remennikov, Multi-scale characterization of novel re-entrant circular auxetic honeycombs under quasi-static crushing, Thin-Walled Structures. 169 (2021) 108314.
- [11] M.-H. Fu, Y. Chen, L.-L. Hu, Bilinear elastic characteristic of enhanced auxetic honeycombs, Compos Struct. 175 (2017) 101–110.
- [12] K.P. Logakannan, V. Ramachandran, J. Rengaswamy, Z. Gao, D. Ruan, Quasi-static and dynamic compression behaviors of a novel auxetic structure, Compos Struct. 254 (2020) 112853.
- [13] M. Xu, D. Liu, P. Wang, Z. Zhang, H. Jia, H. Lei, D. Fang, In-plane compression behavior of hybrid honeycomb metastructures: Theoretical and experimental studies, Aerosp Sci Technol. 106 (2020) 106081.
- [14] H.L. Tan, Z.C. He, K.X. Li, E. Li, A.G. Cheng, B. Xu, In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio, Compos Struct. 229 (2019) 111415.
- [15] Y. Chen, T. Li, Z. Jia, F. Scarpa, C.-W. Yao, L. Wang, 3D printed hierarchical honeycombs with shape integrity under large compressive deformations, Mater Des. 137(2018)226–234.
- [16] Y. Sun, N. Pugno, Hierarchical Fibers with a Negative Poisson’s Ratio for Tougher Composites, Materials. 6 (2013) 699–712.
- [17] X. Zhang, R. Tian, Z. Zhang, G. Li, W. Feng, In-plane elasticity of a novel vertical strut combined re-entrant honeycomb structure with negative Poisson’s ratio, Thin-Walled Structures. 163 (2021) 107634.
- [18] S.Z. Khan, F. Mustahsan, E.R.I. Mahmoud, S.H. Masood, A novel modified re-entrant honeycomb structure to enhance the auxetic behavior: Analytical and numerical study by FEA, Mater Today Proc. 39 (2021) 1041–1045.
- [19] A. Ingrole, A. Hao, R. Liang, Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement, Mater Des. 117 (2017) 72–83.
- [20] L. Wei, X. Zhao, Q. Yu, G. Zhu, A novel star auxetic honeycomb with enhanced in-plane crushing strength, Thin-Walled Structures. 149 (2020) 106623.
- [21] M. Xu, D. Liu, P. Wang, Z. Zhang, H. Jia, H. Lei, D. Fang, In-plane compression behavior of hybrid honeycomb metastructures: Theoretical and experimental studies, Aerosp Sci Technol. 106 (2020) 106081.
- [22] H. Wang, Z. Lu, Z. Yang, X. Li, A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance, Compos Struct. 208 (2019) 758–770.
- [23] X. Zhang, H. Hao, R. Tian, Q. Xue, H. Guan, X. Yang, Quasi-static compression and dynamic crushing behaviors of novel hybrid re-entrant auxetic metamaterials with enhanced energy-absorption, Compos Struct. 288 (2022) 115399.
- [24] Jay Bonner, Islamic geometric patterns, New York, USA, 1999.
- [25] M. Lei, W. Hong, Z. Zhao, C. Hamel, M. Chen, H. Lu, H.J. Qi, 3D Printing of Auxetic Metamaterials with Digitally Reprogrammable Shape, ACS Appl Mater Interfaces. 11 (2019) 22768–22776..
- [26] İ. Erdoğan, İ. Toktas, Geometri İç Kalınlığının Yeni Tasarlanan Ökzetik Yapı Üzerine Etkisinin Araştırılması, Journal of Polytechnic.(2022).
- [27] S. Pothier, R. Roufail, M. Malton, Unit Cell Modelling of Auxetic Structure, Journal of Minerals and Materials Characterization and Engineering. 10 (2022) 360–369.
- [28] J. Zhang, G. Lu, Z. Wang, D. Ruan, A. Alomarah, Y. Durandet, Large deformation of an auxetic structure in tension: Experiments and finite element analysis, Compos Struct. 184 (2018) 92–101.
- [29] S. Pothier, R. Roufail, M. Malton, Unit Cell Modelling of Auxetic Structure, Journal of Minerals and Materials Characterization and Engineering. 10 (2022) 360–369.
- [30] Y. Yao, L. Wang, J. Li, S. Tian, M. Zhang, Y. Fan, A novel auxetic structure based bone screw design: Tensile mechanical characterization and pullout fixation strength evaluation, Mater Des. 188 (2020) 108424.
INVESTIGATION OF THE AUXETIC BEHAVIOR OF AN ORIGINAL LATTICE STRUCTURE DESIGN
Yıl 2023,
Cilt: 11 Sayı: 4, 1081 - 1091, 28.12.2023
Nuriye Nur Kaya
,
Cengiz Eldem
,
İhsan Toktas
Öz
Auxetic structures are special structures with negative Poisson's ratio due to their geometric shapes in their internal structure. When tensile force is applied to these structures, transverse and longitudinal expansions are observed, while transverse and longitudinal contractions are observed when compressive force is applied. There are many different unit cell designs such as chiral, arrowhead, re-entrant in auxetic structures. In this study, a unique cell design was studied and the behavior of an auxetic lattice structure was investigated. The lattice structure designed with different geometric thicknesses and different matrices was analyzed with the finite element analysis program and found to have a negative Poisson's ratio. In the designed lattice structure, the structure with 4×4 matrix and 3 mm geometric thickness was found to have the best negative Poisson's ratio.
Destekleyen Kurum
Gazi Üniversitesi BAP
Proje Numarası
FDK-2022-8066
Teşekkür
Finansal destek için Gazi Üniversitesi BAP birimine (Proje no: FDK-2022-8066) teşekkür ederiz.
Kaynakça
- [1] X. Yu, J. Zhou, H. Liang, Z. Jiang, L. Wu, Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Prog Mater Sci. 94 (2018) 114–173.
- [2] M. Xu, Z. Xu, Z. Zhang, H. Lei, Y. Bai, D. Fang, Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies, Int J Mech Sci.159 (2019) 43-57.
- [3] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog Mater Sci. 46 (2001) 559–632.
- [4] K.E. Evans, A. Alderson, Auxetic Materials: Functional Materials and Structures from Lateral Thinking!, Advanced Materials. 12 (2000) 617–628.
- [5] C. Huang, L. Chen, Negative Poisson’s Ratio in Modern Functional Materials, Advanced Materials. 28 (2016) 8079–8096.
- [6] A. Alderson, K.L. Alderson, Auxetic materials, Proc Inst Mech Eng G J Aerosp Eng. 221 (2007) 565–575.
- [7] R. Gatt, L. Mizzi, J.I. Azzopardi, K.M. Azzopardi, D. Attard, A. Casha, J. Briffa, J.N. Grima, Hierarchical Auxetic Mechanical Metamaterials, Sci Rep. 5 (2015) 8395.
- [8] C. Qi, F. Jiang, A. Remennikov, L.-Z. Pei, J. Liu, J.-S. Wang, X.-W. Liao, S. Yang, Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs, Compos B Eng. 197 (2020) 108117.
- [9] L. Yang, O. Harrysson, H. West, D. Cormier, Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing, Int J Solids Struct. 69–70 (2015) 475–490.
- [10] C. Qi, F. Jiang, S. Yang, A. Remennikov, Multi-scale characterization of novel re-entrant circular auxetic honeycombs under quasi-static crushing, Thin-Walled Structures. 169 (2021) 108314.
- [11] M.-H. Fu, Y. Chen, L.-L. Hu, Bilinear elastic characteristic of enhanced auxetic honeycombs, Compos Struct. 175 (2017) 101–110.
- [12] K.P. Logakannan, V. Ramachandran, J. Rengaswamy, Z. Gao, D. Ruan, Quasi-static and dynamic compression behaviors of a novel auxetic structure, Compos Struct. 254 (2020) 112853.
- [13] M. Xu, D. Liu, P. Wang, Z. Zhang, H. Jia, H. Lei, D. Fang, In-plane compression behavior of hybrid honeycomb metastructures: Theoretical and experimental studies, Aerosp Sci Technol. 106 (2020) 106081.
- [14] H.L. Tan, Z.C. He, K.X. Li, E. Li, A.G. Cheng, B. Xu, In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio, Compos Struct. 229 (2019) 111415.
- [15] Y. Chen, T. Li, Z. Jia, F. Scarpa, C.-W. Yao, L. Wang, 3D printed hierarchical honeycombs with shape integrity under large compressive deformations, Mater Des. 137(2018)226–234.
- [16] Y. Sun, N. Pugno, Hierarchical Fibers with a Negative Poisson’s Ratio for Tougher Composites, Materials. 6 (2013) 699–712.
- [17] X. Zhang, R. Tian, Z. Zhang, G. Li, W. Feng, In-plane elasticity of a novel vertical strut combined re-entrant honeycomb structure with negative Poisson’s ratio, Thin-Walled Structures. 163 (2021) 107634.
- [18] S.Z. Khan, F. Mustahsan, E.R.I. Mahmoud, S.H. Masood, A novel modified re-entrant honeycomb structure to enhance the auxetic behavior: Analytical and numerical study by FEA, Mater Today Proc. 39 (2021) 1041–1045.
- [19] A. Ingrole, A. Hao, R. Liang, Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement, Mater Des. 117 (2017) 72–83.
- [20] L. Wei, X. Zhao, Q. Yu, G. Zhu, A novel star auxetic honeycomb with enhanced in-plane crushing strength, Thin-Walled Structures. 149 (2020) 106623.
- [21] M. Xu, D. Liu, P. Wang, Z. Zhang, H. Jia, H. Lei, D. Fang, In-plane compression behavior of hybrid honeycomb metastructures: Theoretical and experimental studies, Aerosp Sci Technol. 106 (2020) 106081.
- [22] H. Wang, Z. Lu, Z. Yang, X. Li, A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance, Compos Struct. 208 (2019) 758–770.
- [23] X. Zhang, H. Hao, R. Tian, Q. Xue, H. Guan, X. Yang, Quasi-static compression and dynamic crushing behaviors of novel hybrid re-entrant auxetic metamaterials with enhanced energy-absorption, Compos Struct. 288 (2022) 115399.
- [24] Jay Bonner, Islamic geometric patterns, New York, USA, 1999.
- [25] M. Lei, W. Hong, Z. Zhao, C. Hamel, M. Chen, H. Lu, H.J. Qi, 3D Printing of Auxetic Metamaterials with Digitally Reprogrammable Shape, ACS Appl Mater Interfaces. 11 (2019) 22768–22776..
- [26] İ. Erdoğan, İ. Toktas, Geometri İç Kalınlığının Yeni Tasarlanan Ökzetik Yapı Üzerine Etkisinin Araştırılması, Journal of Polytechnic.(2022).
- [27] S. Pothier, R. Roufail, M. Malton, Unit Cell Modelling of Auxetic Structure, Journal of Minerals and Materials Characterization and Engineering. 10 (2022) 360–369.
- [28] J. Zhang, G. Lu, Z. Wang, D. Ruan, A. Alomarah, Y. Durandet, Large deformation of an auxetic structure in tension: Experiments and finite element analysis, Compos Struct. 184 (2018) 92–101.
- [29] S. Pothier, R. Roufail, M. Malton, Unit Cell Modelling of Auxetic Structure, Journal of Minerals and Materials Characterization and Engineering. 10 (2022) 360–369.
- [30] Y. Yao, L. Wang, J. Li, S. Tian, M. Zhang, Y. Fan, A novel auxetic structure based bone screw design: Tensile mechanical characterization and pullout fixation strength evaluation, Mater Des. 188 (2020) 108424.