Araştırma Makalesi
BibTex RIS Kaynak Göster

Galyum Miktarının Düşük Sıcaklıkta Üç Aşamalı Eş-Buharlaştırma ile Üretilen Cu(In1-xGax)(Se0.98Te0.02)2 İnce Film Güneş Pillerinin Diyot Özellikleri ve Güneş Pili Parametreleri Üzerine Etkisi

Yıl 2023, Cilt: 11 Sayı: 4, 1108 - 1115, 28.12.2023
https://doi.org/10.29109/gujsc.1376986

Öz

Bu çalışmada, x değerleri 0.17, 0.20, 0.23 ve 0.26 olan Cu(In1-xGax)(Se0.98Te0.02)2 ince film güneş hücreleri, düşük sıcaklıklarda üç aşamalı eş-buharlaştırma tekniği ile başarıyla üretildi. SLG/Mo/Cu(In1-xGax)(Se0.98Te0.02)2/CdS/ZnO/ITO/Ni-Al-Ni yapısına sahip ince film kalkopirit güneş hücrelerinin diyot özellikleri ve güneş hücresi parametreleri akım-gerilim ölçümleri ile incelendi. İdealite faktörü, seri direnç ve bariyer yüksekliği, oda sıcaklığında karanlıkta ölçülen akım-gerilim sonuçları kullanılarak Cheung-Cheung yöntemiyle elde edildi. İnce film güneş hücrelerinin açık devre gerilimi, kısa devre akım yoğunluğu, dolgu faktörü ve güç dönüşüm verimliliği, oda sıcaklığında AM1.5G standartlarında dört noktalı ölçüm düzeneği ile gerçekleştirilen akım-gerilim ölçümlerinden elde edilmiştir. Galyum içeriğindeki artışın önce idealite faktörünü azalttığı, ancak x değeri 0,23'ü geçtikten sonra tekrar arttırdığı tespit edilmiştir. Galyum miktarı artarken seri direnç değerlerinde dalgalanmalar gözlemlenmiştir. Bariyer yüksekliği galyum miktarının artmasıyla önce artmış, x değeri 0,23'ü geçtikten sonra azalmıştır. Güneş hücresi parametreleri x değerinin 0,23'e kadar artmasıyla artmış, bu noktanın aşılmasıyla azalmıştır. Diyot parametrelerinin birbirini etkilediği ancak en etkili diyot parametresinin idealite faktörü olduğu tespit edilmiştir. Cu(In1-xGax)(Se0.98Te0.02)2 ince film güneş hücrelerinin verimliliği, x değeri 0,17'den 0,23'e artırılarak %3,7'den %6,3'e çıkarılmıştır.

Kaynakça

  • [1] Klaus J., Olindo I., Arno H., Van Swaaij R., Miro Z., (2014). Solar Energy Fundamentals, Technology, and Systems. Cambridge: UIT Cambrigde.
  • [2] Kodigala S. R., (2011). Cu(In1-xGax)Se2 Based Thin Film Solar Cells. Massachusetts: Academic Press.
  • [3] Yuan S., Wang X., Zhao Y., Chang Q., Xu Z., Kong J., Wu S., Solution Processed Cu(In,Ga)(S,Se)2 Solar Cells with 15.25% Efficiency by Surface Sulfurization, ACS Applied Energy Materials, 3 (2020) 6785-6792.
  • [4] Atasoy Y., Başol B., Olğar M., Tomakin M., Bacaksız E., Cu(In,Ga)(Se,Te)2 Films Formed on Metal Foil Substrates by a Two-stage Process Employing Electrodeposition and Evaporation, Thin Solid Films, 649 (2018) 30-37.
  • [5] Atasoy Y., Başol B., Polat İ., Tomakin M., Parlak M., Bacaksız E., Cu(In,Ga)(Se,Te)2 Pentenary Thin Films Formed by Reaction of Precursor Layers, Thin Solid Films, 592 (2015) 189-194.
  • [6] Fiat S., Polat I., Bacaksiz E., Çankaya G., Koralli P., Manolakos D. E., Kompitsas M., Optical and Structural Properties of Nanostructured CuIn0.7Ga0.3(Se(1−x)Tex)2 Chalcopyrite Thin Films - Effect of Stoichiometry and Annealing, Journal of Nanoscience and Nanotechnology, 14 (2014) 5002-5010.
  • [7] Varol S. F., Bacaksiz E., Koralli P., Kompitsas M., Çankaya G., A Novel Nanostructured CuIn0.7Ga0.3(Se0.4Te0.6)2/SLG Multinary Compounds Thin Films: For Photovoltaic Applications, Materials Letters, 142 (2015) 273-276.
  • [8] Fiat S., Polat İ., Bacaksiz E., Kompitsas M., Çankaya G., The Influence of Annealing Temperature and Tellurium (Te) on Electrical and Dielectrical Properties of Al/p-CIGSeTe/Mo Schottky Diodes, Current Applied Physics, 13 (2013) 1112-1118.
  • [9] Karatay A., Küçüköz B., Çankaya G., Ates A., Elmali A., The Effect of Se/Te Ratio on Transient Absorption Behavior and Nonlinear Absorption Properties of CuIn0.7Ga0.3(Se1−xTex)2 (0≤ x≤ 1) Amorphous Semiconductor Thin Films, Optical Materials, 73 (2017) 20-24.
  • [10] Lee T. D., Ebong A. U., A Review of Thin Film Solar Cell Technologies and Challenges, Renewable and Sustainable Energy Reviews, 70 (2017) 1286-1297.
  • [11] Fiat S., Bacaksiz E., Kompitsas M., Çankaya G., Temperature and Tellurium (Te) Dependence of Electrical Characterization and Surface Properties for a Chalcopyrite Structured Schottky Barrier Diode, Journal of Alloys and Compounds, 585 (2014) 178-184.
  • [12] Varol S. F., Bacaksız E., Çankaya G., Kompitsas M., Optical, Structural, and Morphological Characterization of CuIn0.7Ga0.3(Se0.6Te0.4)2 Thin Films under Different Annealing Temperatures, Celal Bayar University Journal of Science, 9 (2013) 9-16.
  • [13] Ağca S., Çankaya G., Sonmezoglu S., Impact of Tellurium as an Anion Dopant on the Photovoltaic Performance of Wide-bandgap Cu(In,Ga)Se2 Thin-film Solar Cells with Rubidium Fluoride Post-deposition Treatment, Frontiers in Energy Research, 11 (2023) 1215712.
  • [14] Mise T., Nakada T., Microstructural and Optical Properties of CuIn3Te5 Thin Films for Solar Cells, Solar Energy Materials and Solar Cells, 94 (2010) 1132-1136.
  • [15] Mise T., Nakada T., Low Temperature Growth and Properties of Cu–In–Te Based Thin Films for Narrow Bandgap Solar Cells, Thin Solid Films, 518 (2010) 5604-5609.
  • [16] Wei S. H., Zhang S. B., Zunger A., Effects of Ga Addition to CuInSe2 on Its Electronic, Structural, and Defect Properties, Applied Physics Letters, 72 (1998) 3199-3201.
  • [17] Bulbul S., Ertugrul G., Arli F., Investigation of Usage Potentials of Global Energy Systems, International Advanced Researches and Engineering Journal, 2 (2018) 58-67.
  • [18] Zhao C., Yu S., Tang W., Yuan X., Zhou H., Qi T., Zheng X., Ning D., Ma M., Zhu J., Zhang J., Yang C., Li W., Advances in CIGS Thin Film Solar Cells with Emphasis on the Alkali Element Post-Deposition Treatment, Materials Reports: Energy, 3 (2023) 100214.
  • [19] Cheung, S. K., Cheung N. W., Extraction of Schottky Diode Parameters from Forward Current-Voltage Characteristics, Applied Physics Letters, 49 (1986) 85-87.
  • [20] Theys B., Klinkert T., Mollica F., Leite E., Donsanti F., Jubault M., Lincot D., Revisiting Schottky Barriers for CIGS Solar Cells: Electrical Characterization of the Al/Cu(InGa)Se2 Contact, Physica Status Solidi A, 213 (2016) 2425-2430.
  • [21] Sönmezoğlu S., Şenkul S., Taş R., Çankaya G., Can M., Electrical Characteristics of an Organic Thin Copolymer/p-Si Schottky Barrier Diode, Thin Solid Films, 518 (2010) 4375-4379.
  • [22] Sönmezoğlu S., Şenkul S., Taş R., Çankaya G., Can M., Electrical and Interface State Density Properties of Polyaniline-poly-3-methyl Thiophene Blend/p-Si Schottky Barrier Diode, Solid State Sciences, 12 (2010) 706-711.
  • [23] Sönmezoğlu S., Durmuş C. B., Taş R., Çankaya G., Can M., Fabrication and Electrical Characterization of Pyrrole-aniline Copolymer-based Schottky Diodes, Semiconductor Science and Technology, 26 (2011) 055011.
  • [24] Akkiliç K., Türüt A., Çankaya G., Kiliçoğlu T., Correlation Between Barrier Heights and Ideality Factors of Cd/n-Si and Cd/p-Si Schottky Barrier Diodes, Solid State Communications, 125 (2003) 551-556.
  • [25] Çankaya G., Uçar N., Türüt A., An Investigation of I-V Characteristics of Au/n-GaAs Schottky Diodes after Hydrostatic Pressure, Physica Status Solidi A, 179 (2000) 469-473.
  • [26] Benghanem M. S., Alamri S. N., Modeling of Photovoltaic Module and Experimental Determination of Serial Resistance, Journal of Taibah University for Science, 2 (2009) 94-105.
  • [27] Keller J., Pearson P., Nilsson N. S., Stolt O., Stolt L., Edoff M., Performance Limitations of Wide-Gap (Ag,Cu)(In,Ga)Se2 Thin-Film Solar Cells, Solar RRL, 2021 (2021) 2100403.
  • [28] Keller J., Sopiha K. V., Stolt O., Stolt L., Persson C., Scragg J. J. S., Törndahl T., Edoff M., Wide-gap (Ag,Cu)(In,Ga)Se2 Solar Cells with Different Buffer Materials—A Path to a Better Heterojunction, Progress in Photovoltaics: Research and Applications, 28 (2020) 237-250.

Effect of Gallium Content on Diode Characteristics and Solar Cell Parameters of Cu(In1-xGax)(Se0.98Te0.02)2 Thin Film Solar Cells Produced by Three-stage Co-evaporation at Low Temperature

Yıl 2023, Cilt: 11 Sayı: 4, 1108 - 1115, 28.12.2023
https://doi.org/10.29109/gujsc.1376986

Öz

In this study, Cu(In1-xGax)(Se0.98Te0.02)2 thin film solar cells with x values of 0.17, 0.20, 0.23, and 0.26 were successfully produced by three-stage co-evaporation technique at low temperatures. The diode characteristics and solar cell parameters of thin film chalcopyrite solar cells with the structure of SLG/Mo/Cu(In1-xGax)(Se0.98Te0.02)2/CdS/ZnO/ITO/Ni-Al-Ni were investigated by current-voltage measurements. The ideality factor, series resistance, and barrier height were obtained by the Cheung-Cheung method using the current-voltage results measured in the dark at room temperature. Open-circuit voltage, short-circuit current density, fill factor, and the power conversion efficiency of the thin film solar cells were derived from the current-voltage measurements realized by a four-point measurement setup under AM1.5G standards at room temperature. It was found that the increase in the gallium content first decreased the ideality factor, however, it increased again after exceeding the x value of 0.23. While the amount of gallium was increasing, fluctuations were observed in the series resistance values. The barrier height first increased with the increasing amount of gallium and decreased after exceeding the x value of 0.23. The solar cell parameters increased by increasing the x value up to 0.23 and decreased after exceeding this point. It was found that the diode parameters have an effect on each other but the most effective diode parameter was the ideality factor. The efficiency of the Cu(In1-xGax)(Se0.98Te0.02)2 thin film solar cells was increased from 3.7% to 6.3% by increasing the x value from 0.17 to 0.23.

Kaynakça

  • [1] Klaus J., Olindo I., Arno H., Van Swaaij R., Miro Z., (2014). Solar Energy Fundamentals, Technology, and Systems. Cambridge: UIT Cambrigde.
  • [2] Kodigala S. R., (2011). Cu(In1-xGax)Se2 Based Thin Film Solar Cells. Massachusetts: Academic Press.
  • [3] Yuan S., Wang X., Zhao Y., Chang Q., Xu Z., Kong J., Wu S., Solution Processed Cu(In,Ga)(S,Se)2 Solar Cells with 15.25% Efficiency by Surface Sulfurization, ACS Applied Energy Materials, 3 (2020) 6785-6792.
  • [4] Atasoy Y., Başol B., Olğar M., Tomakin M., Bacaksız E., Cu(In,Ga)(Se,Te)2 Films Formed on Metal Foil Substrates by a Two-stage Process Employing Electrodeposition and Evaporation, Thin Solid Films, 649 (2018) 30-37.
  • [5] Atasoy Y., Başol B., Polat İ., Tomakin M., Parlak M., Bacaksız E., Cu(In,Ga)(Se,Te)2 Pentenary Thin Films Formed by Reaction of Precursor Layers, Thin Solid Films, 592 (2015) 189-194.
  • [6] Fiat S., Polat I., Bacaksiz E., Çankaya G., Koralli P., Manolakos D. E., Kompitsas M., Optical and Structural Properties of Nanostructured CuIn0.7Ga0.3(Se(1−x)Tex)2 Chalcopyrite Thin Films - Effect of Stoichiometry and Annealing, Journal of Nanoscience and Nanotechnology, 14 (2014) 5002-5010.
  • [7] Varol S. F., Bacaksiz E., Koralli P., Kompitsas M., Çankaya G., A Novel Nanostructured CuIn0.7Ga0.3(Se0.4Te0.6)2/SLG Multinary Compounds Thin Films: For Photovoltaic Applications, Materials Letters, 142 (2015) 273-276.
  • [8] Fiat S., Polat İ., Bacaksiz E., Kompitsas M., Çankaya G., The Influence of Annealing Temperature and Tellurium (Te) on Electrical and Dielectrical Properties of Al/p-CIGSeTe/Mo Schottky Diodes, Current Applied Physics, 13 (2013) 1112-1118.
  • [9] Karatay A., Küçüköz B., Çankaya G., Ates A., Elmali A., The Effect of Se/Te Ratio on Transient Absorption Behavior and Nonlinear Absorption Properties of CuIn0.7Ga0.3(Se1−xTex)2 (0≤ x≤ 1) Amorphous Semiconductor Thin Films, Optical Materials, 73 (2017) 20-24.
  • [10] Lee T. D., Ebong A. U., A Review of Thin Film Solar Cell Technologies and Challenges, Renewable and Sustainable Energy Reviews, 70 (2017) 1286-1297.
  • [11] Fiat S., Bacaksiz E., Kompitsas M., Çankaya G., Temperature and Tellurium (Te) Dependence of Electrical Characterization and Surface Properties for a Chalcopyrite Structured Schottky Barrier Diode, Journal of Alloys and Compounds, 585 (2014) 178-184.
  • [12] Varol S. F., Bacaksız E., Çankaya G., Kompitsas M., Optical, Structural, and Morphological Characterization of CuIn0.7Ga0.3(Se0.6Te0.4)2 Thin Films under Different Annealing Temperatures, Celal Bayar University Journal of Science, 9 (2013) 9-16.
  • [13] Ağca S., Çankaya G., Sonmezoglu S., Impact of Tellurium as an Anion Dopant on the Photovoltaic Performance of Wide-bandgap Cu(In,Ga)Se2 Thin-film Solar Cells with Rubidium Fluoride Post-deposition Treatment, Frontiers in Energy Research, 11 (2023) 1215712.
  • [14] Mise T., Nakada T., Microstructural and Optical Properties of CuIn3Te5 Thin Films for Solar Cells, Solar Energy Materials and Solar Cells, 94 (2010) 1132-1136.
  • [15] Mise T., Nakada T., Low Temperature Growth and Properties of Cu–In–Te Based Thin Films for Narrow Bandgap Solar Cells, Thin Solid Films, 518 (2010) 5604-5609.
  • [16] Wei S. H., Zhang S. B., Zunger A., Effects of Ga Addition to CuInSe2 on Its Electronic, Structural, and Defect Properties, Applied Physics Letters, 72 (1998) 3199-3201.
  • [17] Bulbul S., Ertugrul G., Arli F., Investigation of Usage Potentials of Global Energy Systems, International Advanced Researches and Engineering Journal, 2 (2018) 58-67.
  • [18] Zhao C., Yu S., Tang W., Yuan X., Zhou H., Qi T., Zheng X., Ning D., Ma M., Zhu J., Zhang J., Yang C., Li W., Advances in CIGS Thin Film Solar Cells with Emphasis on the Alkali Element Post-Deposition Treatment, Materials Reports: Energy, 3 (2023) 100214.
  • [19] Cheung, S. K., Cheung N. W., Extraction of Schottky Diode Parameters from Forward Current-Voltage Characteristics, Applied Physics Letters, 49 (1986) 85-87.
  • [20] Theys B., Klinkert T., Mollica F., Leite E., Donsanti F., Jubault M., Lincot D., Revisiting Schottky Barriers for CIGS Solar Cells: Electrical Characterization of the Al/Cu(InGa)Se2 Contact, Physica Status Solidi A, 213 (2016) 2425-2430.
  • [21] Sönmezoğlu S., Şenkul S., Taş R., Çankaya G., Can M., Electrical Characteristics of an Organic Thin Copolymer/p-Si Schottky Barrier Diode, Thin Solid Films, 518 (2010) 4375-4379.
  • [22] Sönmezoğlu S., Şenkul S., Taş R., Çankaya G., Can M., Electrical and Interface State Density Properties of Polyaniline-poly-3-methyl Thiophene Blend/p-Si Schottky Barrier Diode, Solid State Sciences, 12 (2010) 706-711.
  • [23] Sönmezoğlu S., Durmuş C. B., Taş R., Çankaya G., Can M., Fabrication and Electrical Characterization of Pyrrole-aniline Copolymer-based Schottky Diodes, Semiconductor Science and Technology, 26 (2011) 055011.
  • [24] Akkiliç K., Türüt A., Çankaya G., Kiliçoğlu T., Correlation Between Barrier Heights and Ideality Factors of Cd/n-Si and Cd/p-Si Schottky Barrier Diodes, Solid State Communications, 125 (2003) 551-556.
  • [25] Çankaya G., Uçar N., Türüt A., An Investigation of I-V Characteristics of Au/n-GaAs Schottky Diodes after Hydrostatic Pressure, Physica Status Solidi A, 179 (2000) 469-473.
  • [26] Benghanem M. S., Alamri S. N., Modeling of Photovoltaic Module and Experimental Determination of Serial Resistance, Journal of Taibah University for Science, 2 (2009) 94-105.
  • [27] Keller J., Pearson P., Nilsson N. S., Stolt O., Stolt L., Edoff M., Performance Limitations of Wide-Gap (Ag,Cu)(In,Ga)Se2 Thin-Film Solar Cells, Solar RRL, 2021 (2021) 2100403.
  • [28] Keller J., Sopiha K. V., Stolt O., Stolt L., Persson C., Scragg J. J. S., Törndahl T., Edoff M., Wide-gap (Ag,Cu)(In,Ga)Se2 Solar Cells with Different Buffer Materials—A Path to a Better Heterojunction, Progress in Photovoltaics: Research and Applications, 28 (2020) 237-250.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Güneş Enerjisi Sistemleri, Bileşik Yarı İletkenler, Elektronik,Optik ve Manyetik Malzemeler
Bölüm Tasarım ve Teknoloji
Yazarlar

Semih Ağca 0000-0002-4834-5337

Güven Çankaya 0000-0003-2932-1695

Erken Görünüm Tarihi 30 Kasım 2023
Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 16 Ekim 2023
Kabul Tarihi 4 Kasım 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 4

Kaynak Göster

APA Ağca, S., & Çankaya, G. (2023). Effect of Gallium Content on Diode Characteristics and Solar Cell Parameters of Cu(In1-xGax)(Se0.98Te0.02)2 Thin Film Solar Cells Produced by Three-stage Co-evaporation at Low Temperature. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 11(4), 1108-1115. https://doi.org/10.29109/gujsc.1376986

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526