Araştırma Makalesi
BibTex RIS Kaynak Göster

Değişken Sayıda Delikler İçeren Emici Plakalara Sahip Güneş Enerjili Hava Isıtıcısının Sayısal Analizi

Yıl 2023, Cilt: 11 Sayı: 4, 1162 - 1170, 28.12.2023
https://doi.org/10.29109/gujsc.1395961

Öz

Dünya nüfusundaki meydana gelen artışlar, enerjiye olan talepleri de doğrudan etkilemektedir. Nüfus artışı ile doğrudan etkilenen enerji taleplerine karşı tepki verebilmek ve sürdürülebilir bir gelecek sağlamak amacıyla farklı enerji kaynakları arayışları ortaya çıkmaktadır. Son zamanlarda popüler bir hale gelen yenilenebilir enerji kaynaklarının en temeli olan güneş enerjisinden elektrik üretimi ve ısıl uygulamalar ilerlemeye devam etmektedir. Bu çalışmada güneş enerjisinden ısıl enerji elde etmek amacıyla kullanılan güneş enerjili hava ısıtıcıların performansının arttırılması amaçlanmış ve farklı emici yüzeylere sahip güneş enerjili hava ısıtıcısı modelleri geliştirilmiştir. Geliştirilmiş olan bu modellerin analizleri Hesaplamalı Akışkanlar Dinamiği (HAD) yaklaşımı ile gerçekleştirilmiş ve sonuçlar değerlendirilmiştir. Başlangıçta geleneksel düz emici plakalı güneş enerjili hava ısıtıcısı modellenmiştir. Daha sonra düz plakaya sırasıyla 2, 4 ve 8 adet delikler eklenmiş ve aynı şartlar altında sistem analizleri gerçekleştirilmiştir. Yapılan bu analizler sonucu benzer oranlarda basınç düşüşleri görülmüş ve hava akış hızları oldukça yakın oranda azalmıştır. Bunun yanı sıra giriş ve çıkış noktası arasındaki sıcaklık farkları düz plakalı, 2 delikli, 4 delikli ve 8 delikli model için sırasıyla 12,6℃, 10℃, 13,5℃ ve 16,2℃ olarak elde edilmiştir. Elde edilen sonuçlara bağlı olarak delik sayısı ile sistem performansında arttığı ve oluşturulan deliklerin türbülans etkisi yaratarak ısı transferini önemli ölçüde iyileştirdiği gözlemlenmiştir.

Kaynakça

  • [1] Alic, E., Das, M., & Akpinar, E. K., Design, manufacturing, numerical analysis and environmental effects of single-pass forced convection solar air collector, Journal of Cleaner Production, 311 (2021) 127518.
  • [2] Ammar, M., Mokni, A., Mhiri, H., & Bournot, P., Numerical analysis of solar air collector provided with rows of rectangular fins., Energy Reports, 6 (2020) 3412-3424.
  • [3] Embiale, D. T., & Gunjo, D. G., Investigation on solar drying system with double pass solar air heater coupled with paraffin wax based latent heat storage: Experimental and numerical study., Results in Engineering, (2023) 101561.
  • [4] Maurya, O. K., Ekka, J. P., Kumar, D., Dewangan, D., & Singh, A., Experimental and numerical methods for the performance analysis of a tubular three-pass solar air heater., Energy, 283 (2023) 128640.
  • [5] Iqbal, M. H., Ahmed, N., Ali, M., Qaisrani, M. A., Mahmood, M., Waqas, A., ... & Sajid, M. B., Numerical analysis of a novel solar air heater design with V-ribs and jet cooling., Sustainable Energy Technologies and Assessments, 57 (2023) 103252.
  • [6] Raturi, P., Deolal, H., & Kimothi, S., Numerical analysis of the return flow solar air heater (RF-SAH) with assimilation of V-type artificial roughness., Energy and Built Environment, 5(2) (2024) 185-193.
  • [7] Choi, H. U., & Choi, K. H., Numerical study on the performance of a solar-assisted heat pump coupled with a photovoltaic-thermal air heater., Energy, 285 (2023) 129480.
  • [8] Alta, D., Bilgili, E., Ertekin, C., & Yaldiz, O., Experimental investigation of three different solar air heaters: Energy and exergy analyses., Applied Energy, 87(10) (2010) 2953-2973.
  • [9] Khanlari, A., Sözen, A., Şirin, C., Tuncer, A. D., & Gungor, A., Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater., Journal of Cleaner Production, 251 (2020) 119672.
  • [10] Widyolar, B., Jiang, L., Brinkley, J., Hota, S. K., Ferry, J., Diaz, G., & Winston, R., Experimental performance of an ultra-low-cost solar photovoltaic-thermal (PVT) collector using aluminum minichannels and nonimaging optics., Applied energy, 268 (2020) 114894.
  • [11] Mgbemene, C., Jacobs, I., Okoani, A., & Ononiwu, N., Experimental investigation on the performance of aluminium soda can solar air heater., Renewable Energy., 195 (2022) 182-193.
  • [12] Acır, A., & Çinici, O. K., Experimental investigation of a thermal energy storage unit integrated with thermoelectric generators under solar radiation. Solar Energy, 265 (2023) 112028.
  • [13] Bayyiğit, A., Çinici, O. K., & Acır, A., Tek yüzeyli ve çift yüzeyli fotovoltaik panellerin performans analizi. Gazi University Journal of Science Part C: Design and Technology, 11(2), (2023), 407-420.
  • [14] Tuncer, A. D., Amini, A., & Khanlari, A., Developing an infrared-assisted solar drying system using a vertical solar air heater with perforated baffles and nano-enhanced black paint., Solar Energy, 263 (2023) 111958.
  • [15] Khanlari, A., Tuncer, A. D., Sözen, A., Aytaç, İ., Çiftçi, E., & Variyenli, H. İ., Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles., Renewable Energy, 187 (2022) 586-602.
  • [16] Selimefendigil, F., & Şirin, C., Energy and exergy analysis of a hybrid photovoltaic/thermal-air collector modified with nano-enhanced latent heat thermal energy storage unit., Journal of Energy Storage, 45 (2022) 103467.
  • [17] Nazari, M., Jafarmadar, S., & Khalilarya, S., Exergy and thermoeconomic analyses of serpentine tube flat-plate solar water heaters coated with CuO nanostructures., Case Studies in Thermal Engineering, 35 (2022) 102072.
  • [18] Selimefendigil, F., Şirin, C., Ghachem, K., Kolsi, L., Alqahtani, T., & Algarni, S., Enhancing the performance of a greenhouse drying system by using triple-flow solar air collector with nano-enhanced absorber coating., Case Studies in Thermal Engineering, 34 (2022) 102011. [19] Kumar, R., Verma, S. K., & Sharma, V. K., Performance enhancement analysis of triangular solar air heater coated with nanomaterial embedded in black paint., Materials Today: Proceedings, 26 (2020) 2528-2532.
  • [20] Jeong, D., Lee, J., Hong, H., Choi, D., Cho, J. W., Kim, S. K., & Nam, Y., Absorption mechanism and performance characterization of CuO nanostructured absorbers., Solar Energy Materials and Solar Cells, 169 (2017) 270-279.
  • [21] Selimefendigil, F., Şirin, C., & Öztop, H. F., Improving the performance of an active greenhouse dryer by integrating a solar absorber north wall coated with graphene nanoplatelet-embedded black paint., Solar Energy, 231 (2022) 140-148.
  • [22] Öztürk, M., & Çiftçi, E., Upgrading the performance of a solar air collector with flexible aluminum air ducts and graphene nanoplatelet-enhanced absorber coating., Thermal Science and Engineering Progress, 40 (2023) 101760.
  • [23] Benli, H., Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes., Renewable Energy, 50 (2013) 58-67.
  • [24] Abuşka, M., Energy and exergy analysis of solar air heater having new design absorber plate with conical surface., Applied Thermal Engineering, 131 (2018) 115-124.
  • [25] AFS, P-1 Solar Radiations Modeli Theory, https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node112.htm

Numerical Analysis of a Solar Air Heater with Absorber Plates Containing a Variable Number of Holes

Yıl 2023, Cilt: 11 Sayı: 4, 1162 - 1170, 28.12.2023
https://doi.org/10.29109/gujsc.1395961

Öz

Increases in the world population directly affect the demands for energy. There is a search for different energy sources in order to respond to energy demands that are directly affected by population growth and to ensure a sustainable future. Electricity production and thermal applications from solar energy, the most basic of renewable energy sources that have become popular recently, continue to progress. In this study, it was aimed to increase the performance of solar air heaters used to obtain thermal energy from solar energy, and solar air heater models with different absorbent surfaces were developed. The analyzes of these developed models were carried out with the Computational Fluid Dynamics (CFD) approach and the results were evaluated. Initially, a conventional flat absorber plate solar air heater was modeled. Then, 2, 4 and 8 holes were added to the flat plate, respectively, and system analyzes were carried out under the same conditions. As a result of these analyses, pressure drops at similar rates were observed and air flow rates decreased at a very similar rate. In addition, the temperature differences between the inlet and outlet points were obtained as 12.6℃, 10℃, 13.5℃ and 16.2℃ for the flat plate, 2-hole, 4-hole and 8-hole model, respectively. Based on the results obtained, it has been observed that the system performance increases with the number of holes and that the holes created significantly improve heat transfer by creating a turbulence effect.

Kaynakça

  • [1] Alic, E., Das, M., & Akpinar, E. K., Design, manufacturing, numerical analysis and environmental effects of single-pass forced convection solar air collector, Journal of Cleaner Production, 311 (2021) 127518.
  • [2] Ammar, M., Mokni, A., Mhiri, H., & Bournot, P., Numerical analysis of solar air collector provided with rows of rectangular fins., Energy Reports, 6 (2020) 3412-3424.
  • [3] Embiale, D. T., & Gunjo, D. G., Investigation on solar drying system with double pass solar air heater coupled with paraffin wax based latent heat storage: Experimental and numerical study., Results in Engineering, (2023) 101561.
  • [4] Maurya, O. K., Ekka, J. P., Kumar, D., Dewangan, D., & Singh, A., Experimental and numerical methods for the performance analysis of a tubular three-pass solar air heater., Energy, 283 (2023) 128640.
  • [5] Iqbal, M. H., Ahmed, N., Ali, M., Qaisrani, M. A., Mahmood, M., Waqas, A., ... & Sajid, M. B., Numerical analysis of a novel solar air heater design with V-ribs and jet cooling., Sustainable Energy Technologies and Assessments, 57 (2023) 103252.
  • [6] Raturi, P., Deolal, H., & Kimothi, S., Numerical analysis of the return flow solar air heater (RF-SAH) with assimilation of V-type artificial roughness., Energy and Built Environment, 5(2) (2024) 185-193.
  • [7] Choi, H. U., & Choi, K. H., Numerical study on the performance of a solar-assisted heat pump coupled with a photovoltaic-thermal air heater., Energy, 285 (2023) 129480.
  • [8] Alta, D., Bilgili, E., Ertekin, C., & Yaldiz, O., Experimental investigation of three different solar air heaters: Energy and exergy analyses., Applied Energy, 87(10) (2010) 2953-2973.
  • [9] Khanlari, A., Sözen, A., Şirin, C., Tuncer, A. D., & Gungor, A., Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater., Journal of Cleaner Production, 251 (2020) 119672.
  • [10] Widyolar, B., Jiang, L., Brinkley, J., Hota, S. K., Ferry, J., Diaz, G., & Winston, R., Experimental performance of an ultra-low-cost solar photovoltaic-thermal (PVT) collector using aluminum minichannels and nonimaging optics., Applied energy, 268 (2020) 114894.
  • [11] Mgbemene, C., Jacobs, I., Okoani, A., & Ononiwu, N., Experimental investigation on the performance of aluminium soda can solar air heater., Renewable Energy., 195 (2022) 182-193.
  • [12] Acır, A., & Çinici, O. K., Experimental investigation of a thermal energy storage unit integrated with thermoelectric generators under solar radiation. Solar Energy, 265 (2023) 112028.
  • [13] Bayyiğit, A., Çinici, O. K., & Acır, A., Tek yüzeyli ve çift yüzeyli fotovoltaik panellerin performans analizi. Gazi University Journal of Science Part C: Design and Technology, 11(2), (2023), 407-420.
  • [14] Tuncer, A. D., Amini, A., & Khanlari, A., Developing an infrared-assisted solar drying system using a vertical solar air heater with perforated baffles and nano-enhanced black paint., Solar Energy, 263 (2023) 111958.
  • [15] Khanlari, A., Tuncer, A. D., Sözen, A., Aytaç, İ., Çiftçi, E., & Variyenli, H. İ., Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles., Renewable Energy, 187 (2022) 586-602.
  • [16] Selimefendigil, F., & Şirin, C., Energy and exergy analysis of a hybrid photovoltaic/thermal-air collector modified with nano-enhanced latent heat thermal energy storage unit., Journal of Energy Storage, 45 (2022) 103467.
  • [17] Nazari, M., Jafarmadar, S., & Khalilarya, S., Exergy and thermoeconomic analyses of serpentine tube flat-plate solar water heaters coated with CuO nanostructures., Case Studies in Thermal Engineering, 35 (2022) 102072.
  • [18] Selimefendigil, F., Şirin, C., Ghachem, K., Kolsi, L., Alqahtani, T., & Algarni, S., Enhancing the performance of a greenhouse drying system by using triple-flow solar air collector with nano-enhanced absorber coating., Case Studies in Thermal Engineering, 34 (2022) 102011. [19] Kumar, R., Verma, S. K., & Sharma, V. K., Performance enhancement analysis of triangular solar air heater coated with nanomaterial embedded in black paint., Materials Today: Proceedings, 26 (2020) 2528-2532.
  • [20] Jeong, D., Lee, J., Hong, H., Choi, D., Cho, J. W., Kim, S. K., & Nam, Y., Absorption mechanism and performance characterization of CuO nanostructured absorbers., Solar Energy Materials and Solar Cells, 169 (2017) 270-279.
  • [21] Selimefendigil, F., Şirin, C., & Öztop, H. F., Improving the performance of an active greenhouse dryer by integrating a solar absorber north wall coated with graphene nanoplatelet-embedded black paint., Solar Energy, 231 (2022) 140-148.
  • [22] Öztürk, M., & Çiftçi, E., Upgrading the performance of a solar air collector with flexible aluminum air ducts and graphene nanoplatelet-enhanced absorber coating., Thermal Science and Engineering Progress, 40 (2023) 101760.
  • [23] Benli, H., Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes., Renewable Energy, 50 (2013) 58-67.
  • [24] Abuşka, M., Energy and exergy analysis of solar air heater having new design absorber plate with conical surface., Applied Thermal Engineering, 131 (2018) 115-124.
  • [25] AFS, P-1 Solar Radiations Modeli Theory, https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node112.htm
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Güneş Enerjisi Sistemleri
Bölüm Tasarım ve Teknoloji
Yazarlar

Murat Öztürk 0000-0002-0668-8075

Erdem Çiftçi 0000-0003-2493-5962

Erken Görünüm Tarihi 20 Aralık 2023
Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 25 Kasım 2023
Kabul Tarihi 7 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 4

Kaynak Göster

APA Öztürk, M., & Çiftçi, E. (2023). Değişken Sayıda Delikler İçeren Emici Plakalara Sahip Güneş Enerjili Hava Isıtıcısının Sayısal Analizi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 11(4), 1162-1170. https://doi.org/10.29109/gujsc.1395961

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526