Sürtünme Karıştırma Yöntemi (SKY) ile İşlenmiş AA6061/TiB2/B4C/GNP Hibrit Yüzey Kompozitlerin Üretimi ve Mekanik Özelliklerinin İncelenmesi
Yıl 2024,
Cilt: 12 Sayı: 1, 405 - 426, 25.03.2024
Burcu Şahingöz
,
Halil Karakoç
,
Ramazan Çıtak
Öz
Bu çalışmada sürtünme karıştırma yöntemi ile AA6061 alüminyum alaşımı ve farklı oranlarda TiB2/Nano Grafen/B4C takviyeli hibrit yüzey kompozitleri üretilmiş ve mekanik özellikleri ile mikroyapı analizleri yapılmıştır. AA6061 altlığı üzerine 2 mm sabit aralıklarla 3 mm çapında ve 1.5 mm derinliğinde delikler açılmış, açılan bu deliklere farklı oranlarda karıştırılmış TiB2/Nano Grafen/B4C tozları doldurulmuştur. Takviye tozları ultrasonik ve mekanik olarak karıştırılmıştır. Sürtünme Karıştırma yöntemi ile 7 farklı takviye oranında hibrit yüzey kompoziti aynı profilde karıştırıcı uç kullanılarak sabit hızda üretilmiştir. Üretilen kompozitlerin çekme dayanımları, farklı yüklerdeki aşınma dirençleri ve sertlikleri belirlenmiştir. Ayrıca optik ve SEM mikroskoplar ile mikroyapı, kırık yüzey ve aşınma yüzeyi analizleri ile element haritalaması yapılmıştır. En düşük çekme dayanımı takviyesiz alaşımda elde edilirken TiB2, nano grafen ve B4C ilaveli yüzey kompozitlerin dayanımı artmıştır. Mikroyapılarda herhangi bir gözenek ve boşluk tespit edilmemiştir Kırık yüzeylerde takviye elemanı arttıkça gevrek kırılmaların meydana geldiği görülmüştür.
Kaynakça
- [1] Z. Hao, Y. Ju, L. Chen, Тhe Use of Aluminium and Magnesium Alloys in Automotive Lightweight Technologies, J. Mech. Sci. Technol. 37 (2023) 4615–4622. https://doi.org/10.1007/s12206-023-0712-2.
- [2] S. Thanikodi, A.S.F. Britto, V.S.N.C. Dattu, S. Al Obaid, S. Alfarraj, M.A. Kalam, Machining and mechanical characterization of friction stir processed (FSP) surface hybrid composites (AA8014 + TiB2 + ZrO2), Int. J. Adv. Manuf. Technol. (2023). https://doi.org/10.1007/s00170-023-12198-z.
- [3] S.A. Kara, C. Özarpa, İ. Esen, H. Ahlatci, Y. Turen, Investigation of corrosion behavior of boron carbide reinforced AA7075 powder composites, J. Alloys Compd. 968 (2023). https://doi.org/10.1016/j.jallcom.2023.172198.
- [4] M.M. Jalilvand, Y. Mazaheri, A. Heidarpour, M. Roknian, Development of A356/Al 2 O 3 + SiO 2 surface hybrid nanocomposite by friction stir processing, Surf. Coatings Technol. 360 (2019) 121–132. https://doi.org/10.1016/j.surfcoat.2018.12.126.
- [5] H. DOĞAN, Y. MUTLU, Production of AA2024-Matrix B4C-SiC- and B4C-Y2O3-Particle-Reinforced Composites by Powder Metallurgy and Investigation of Their Mechanical Properties, Celal Bayar Üniversitesi Fen Bilim. Derg. 18 (2022) 321–330. https://doi.org/10.18466/cbayarfbe.1130031.
- [6] A. Fathy, D. Ibrahim, O. Elkady, M. Hassan, Evaluation of mechanical properties of 1050-Al reinforced with SiC particles via accumulative roll bonding process, J. Compos. Mater. 53 (2019) 209–218. https://doi.org/10.1177/0021998318781462.
- [7] H. ARIK, Toz Metalurjisi Metoduyla Al-SiC Kompozit Malzeme Üretimi ve Aşınma Özelliklerinin Araştırılması, Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol. 7 (2019) 741–754. https://doi.org/10.29109/gujsc.587637.
- [8] P. Samal, P.R. Vundavilli, A. Meher, M.M. Mahapatra, Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties, J. Manuf. Process. 59 (2020) 131–152. https://doi.org/10.1016/j.jmapro.2020.09.010.
- [9] L.F. Ali, R. Soundararajan, S. Jeyasurya, M. Kovarthanam, S.N. Prasath, Metallurgical assessment of AA7075 - T6 with x wt% tungsten carbide nanoparticle surface composites processed by FSP route, Mater. Today Proc. 45 (2021) 2152–2158. https://doi.org/10.1016/j.matpr.2020.10.003.
- [10] R. Dhayalan, K. Kalaiselvan, R. Sathiskumar, Characterization of AA6063/SiC-Gr surface composites produced by FSP technique, Procedia Eng. 97 (2014) 625–631. https://doi.org/10.1016/j.proeng.2014.12.291.
- [11] M.Z. Rahman, A.N. Siddiquee, Z.A. Khan, S. Ahmad, Multi-response optimization of FSP parameters on mechanical properties of surface composite, Mater. Today Proc. 62 (2022) 5–8. https://doi.org/10.1016/j.matpr.2022.01.379.
- [12] S. Li, M. Paidar, S. Liu, S. Mehrez, P.S. Kumar, V. Mohanavel, Importance of pin number on mechanical properties and wear performance during manufacturing of AL6061/316 surface composite via FSP, Mater. Lett. 326 (2022) 132919. https://doi.org/10.1016/j.matlet.2022.132919.
- [13] N. Kaya, C. Çetinkaya, H. Karakoç, H. Ada, Effect of process parameters of Al5083/SiC surface composites fabricated by FSP on microstructure, mechanical properties and wear behaviors, Mater. Chem. Phys. 315 (2024) 128991. https://doi.org/10.1016/j.matchemphys.2024.128991.
- [14] T. Thankachan, K.S. Prakash, V. Kavimani, Investigating the effects of hybrid reinforcement particles on the microstructural, mechanical and tribological properties of friction stir processed copper surface composites, Compos. Part B Eng. 174 (2019) 107057. https://doi.org/10.1016/j.compositesb.2019.107057.
- [15] M.A. Khan, R. Butola, N. Gupta, A review of nanoparticle reinforced surface composites processed by friction stir processing, J. Adhes. Sci. Technol. 37 (2023) 565–601. https://doi.org/10.1080/01694243.2022.2037054.
- [16] C.N. Shyam Kumar, R. Bauri, D. Yadav, Wear properties of 5083 Al-W surface composite fabricated by friction stir processing, Tribol. Int. 101 (2016) 284–290. https://doi.org/10.1016/j.triboint.2016.04.033.
- [17] H. Mehdi, R.S. Mishra, Consequence of reinforced SiC particles on microstructural and mechanical properties of AL6061 surface composites by multi-pass FSP, J. Adhes. Sci. Technol. 36 (2022) 1279–1298. https://doi.org/10.1080/01694243.2021.1964846.
- [18] W. Ma, M. Paidar, O.O. Ojo, S. Mehrez, A.M. Zain, A. Kulandaivel, V. Mohanavel, S. Kannan, Improving the wear resistance and mechanical properties of hybridized AZ80 Mg/CeO2+ZrO2 surface composite by friction stir processing: Effect of pin geometry, Vacuum. 212 (2023) 111980. https://doi.org/10.1016/j.vacuum.2023.111980.
- [19] L. Huang, M. Paidar, A. Mohd Zain, M.R.A. Refaai, S. Abdullaev, M. Šlapáková, Effect of processing environment during friction stir processing of AZ31/(ZrO2+CuO)p surface composite on the mechanical and tribological performance, J. Mater. Res. Technol. 28 (2024) 1891–1899. https://doi.org/10.1016/j.jmrt.2023.11.222.
- [20] E.B. Moustafa, A. V. Mikhaylovskaya, M.A. Taha, A.O. Mosleh, Improvement of the microstructure and mechanical properties by hybridizing the surface of AA7075 by hexagonal boron nitride with carbide particles using the FSP process, J. Mater. Res. Technol. 17 (2022) 1986–1999. https://doi.org/10.1016/j.jmrt.2022.01.150.
- [21] A. Sharma, D. Narsimhachary, V.M. Sharma, B. Sahoo, J. Paul, Surface modification of Al6061-SiC surface composite through impregnation of graphene, graphite & carbon nanotubes via FSP: A tribological study, Surf. Coatings Technol. 368 (2019) 175–191. https://doi.org/10.1016/j.surfcoat.2019.04.001.
- [22] Ö.B. Acımert, S. Murat, A.K. Dayauç, K. Tevfik, Farklı Pasolarda Uygulanmış Sürtünme Karıştırma Prosesinin Al- 5083 ’ ün Tribolojik Özellikleri Üzerindeki Etkisinin İ ncelenmesi Investigation of the Effect of Friction Stir Process Performed in Different Passes on the Tribological Properties of Al-5083, (n.d.) 0–2.
- [23] S. Bharti, N.D. Ghetiya, K.M. Patel, A review on manufacturing the surface composites by friction stir processing, Mater. Manuf. Process. 36 (2021) 135–170. https://doi.org/10.1080/10426914.2020.1813897.
- [24] H. Gökmeşe, H.B. KARADAĞ, Toz Metal AA 2014-SiC-B4C Kompozit/Hibrit Malzemelerinin Mikroyapı ve Mekanik Özelliklerinin İncelenmesi, Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol. (2018) 385–398. https://doi.org/10.29109/http-gujsc-gazi-edu-tr.364857.
- [25] M. Narimani, B. Lotfi, Z. Sadeghian, Evaluation of the microstructure and wear behaviour of AA6063-B4C/TiB2 mono and hybrid composite layers produced by friction stir processing, Surf. Coatings Technol. 285 (2016) 1–10. https://doi.org/10.1016/j.surfcoat.2015.11.015.
- [26] M. Patel, J. Murugesan, Fretting Wear and Corrosion Behaviour of an Al–ZrO2/Ni Hybrid Composite Developed by Friction Stir Processing, Trans. Indian Inst. Met. 75 (2022) 1525–1534. https://doi.org/10.1007/s12666-022-02527-3.
- [27] Karakoca, Y. E., & AYTAÇ, A. (2022). Investigation of Drillability of CFRP/Al 7075 Stack. Mechanics, 28(6), 430-438. https://doi.org/10.5755/j02.mech.31038
- [28] B. Basu, G.B. Raju, A.K. Suri, Processing and properties of monolithic TiB2 based materials, Int. Mater. Rev. 51 (2006) 352–374. https://doi.org/10.1179/174328006X102529.
- [29] Z.L. Chao, Z.W. Wang, L.T. Jiang, S.P. Chen, B.J. Pang, R.W. Zhang, S.Q. Du, G.Q. Chen, Q. Zhang, G.H. Wu, Microstructure and mechanical properties of B4C/2024Al functionally gradient composites, Mater. Des. 215 (2022) 1–12. https://doi.org/10.1016/j.matdes.2022.110449.
- [30] O. ALTUNTAŞ, Taguchi Based Gray Relational Analysis of Production Parameters of Al7075/B4C/GNP’s Hybrid Composites, Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol. 11 (2023) 850–856. https://doi.org/10.29109/gujsc.1348957.
- [31] P. Cataldi, A. Athanassiou, I.S. Bayer, Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications, Appl. Sci. 8 (2018). https://doi.org/10.3390/app8091438.
- [32] O. Altuntas, M. Ozer, G. Altuntas, A. Ozer, Investigation of the microstructure, hardness and electrical conductivity properties of Fe/Graphene compacts, Mater. Sci. Technol. (United Kingdom). 39 (2023) 2670–2679. https://doi.org/10.1080/02670836.2023.2213554.
- [33] S.K. Patel, V.P. Singh, B.S. Roy, B. Kuriachen, Recent research progresses in Al-7075 based in-situ surface composite fabrication through friction stir processing: A review, Mater. Sci. Eng. B. 262 (2020) 114708. https://doi.org/10.1016/j.mseb.2020.114708.
- [34] A. Kumar, V. Kumar, A review of recent progress in the fabrication of surface composites through friction stir processing, Mater. Today Proc. 63 (2022) 494–503. https://doi.org/10.1016/j.matpr.2022.03.648.
- [35] R.K. Arya, R. Kumar, A. Telang, A.S. Yadav, Effect of Microstructure on Mechanical Behaviors of Al6061 Metal Matrix Composite Reinforced with Silicon Nitride (Si3N4) and Silicon Carbide (SiC) Micro Particles, Silicon. 15 (2023) 5911–5923. https://doi.org/10.1007/s12633-023-02468-6.
- [36] R.F. Guo, S.M. Chen, P. Shen, Influence of Si, Ti, and Cu as alloying elements on the wettability and reactivity of an Al/B4C system, J. Mater. Res. Technol. 27 (2023) 6104–6116. https://doi.org/10.1016/j.jmrt.2023.11.058.
- [37] A. Jamali, S.E. Mirsalehi, Investigation on effects of traverse speed and number of passes on mechanical and abrasive properties of AA7075-T6/ZrO2 surface nanocomposite produced using friction stir processing, Weld. World. 66 (2022) 2297–2313. https://doi.org/10.1007/s40194-022-01331-3.
- [38] İ. ŞİMŞEK, The Effect of B4C Amount on Wear Behaviors of Al-Graphite/B4C Hybrid Composites Produced by Mechanical Alloying, J. Boron. 4 (2019) 100–106. https://doi.org/10.30728/boron.556707.
- [39] S. Singh, K. Pal, Effect of texture evolution on mechanical and damping properties of SiC/ZnAl 2 O 4 /Al composite through friction stir processing, J. Mater. Res. Technol. 8 (2019) 222–232. https://doi.org/10.1016/j.jmrt.2017.07.006.
- [40] V. Sharma, U. Prakash, B.V.M. Kumar, Surface composites by friction stir processing: A review, J. Mater. Process. Technol. 224 (2015) 117–134. https://doi.org/10.1016/j.jmatprotec.2015.04.019.
- [41] T. Senthilnathan, K. Balachandar, Mechanical and microstructure evaluation of novel hybrid TiB2/B4C aluminium metal matrix composite, Mater. Res. Express. 10 (2023). https://doi.org/10.1088/2053-1591/acda18.
- [42] E.B. Moustafa, A. Melaibari, G. Alsoruji, A.M. Khalil, A.O. Mosleh, Al 5251-based hybrid nanocomposite by FSP reinforced with graphene nanoplates and boron nitride nanoparticles: Microstructure, wear, and mechanical characterization, Nanotechnol. Rev. 10 (2021) 1752–1765. https://doi.org/10.1515/ntrev-2021-0108.
- [43] M. Çelebi, A. Çanakçı, O. Güler, S. Özkaya, A.H. Karabacak, K.A. Arpacı, Investigation of Microstructure, Hardness and Wear Properties of Hybrid Nanocomposites with Al2024 Matrix and Low Contents of B4C and h-BN Nanoparticles Produced by Mechanical Milling Assisted Hot Pressing, Jom. 74 (2022) 4449–4461. https://doi.org/10.1007/s11837-022-05441-7.
- [44] I. Şahin, A. Bektaş, F. Gül, H. Çinici, Modeling of wear behavior of Al/B4C composites produced by powder metallurgy, Mater. Test. 59 (2017) 491–496. https://doi.org/10.3139/120.111028.
- [45] M.C. Şenel, M. Demİr, Effect of Induction Heat Treatment Process and Graphene/B4C Amount on the Tribological and Mechanical Properties of Al6061 Hybrid Composites, Jom. 75 (2023) 2554–2568. https://doi.org/10.1007/s11837-023-05790-x.
- [46] N.F.B. Wakhi Anuar, M.S. Salleh, M.Z. Omar, W.F.H.W. Zamri, A. Md Ali, S. Samat, Wear properties of graphene-reinforced aluminium metal matrix composite: A review, Rev. Adv. Mater. Sci. 62 (2023). https://doi.org/10.1515/rams-2022-0326.
- [47] R. Harichandran, N. Selvakumar, Effect of nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process, Arch. Civ. Mech. Eng. 16 (2016) 147–158. https://doi.org/10.1016/j.acme.2015.07.001.
- [48] S. Rengifo, C. Zhang, S. Harimkar, B. Boesl, A. Agarwal, Tribological Behavior of Spark Plasma Sintered Aluminum-Graphene Composites at Room and Elevated Temperatures, Technologies. 5 (2017) 4. https://doi.org/10.3390/technologies5010004.
- [49] H. min Xia, L. Zhang, Y. chao Zhu, N. Li, Y. qi Sun, J. dong Zhang, H. zhong Ma, Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater. 27 (2020) 1295–1300. https://doi.org/10.1007/s12613-020-2009-0.
Production of AA6061/TiB2/B4C/GNP hybrid surface composites processed by friction stir processing (FSP) and ınvestigation of mechanical properties
Yıl 2024,
Cilt: 12 Sayı: 1, 405 - 426, 25.03.2024
Burcu Şahingöz
,
Halil Karakoç
,
Ramazan Çıtak
Öz
Bu çalışmada sürtünme karıştırma yöntemi ile AA6061 alüminyum alaşımı ve farklı oranlarda TiB2/Nano Grafen/B4C takviyeli hibrit yüzey kompozitleri üretilmiş ve mekanik özellikleri ile mikroyapı analizleri yapılmıştır. AA6061 altlığı üzerine 2 mm sabit aralıklarla 3 mm çapında ve 1.5 mm derinliğinde delikler açılmış, açılan bu deliklere farklı oranlarda karıştırılmış TiB2/Nano Grafen/B4C tozları doldurulmuştur. Takviye tozları ultrasonik ve mekanik olarak karıştırılmıştır. Sürtünme Karıştırma yöntemi ile 7 farklı takviye oranında hibrit yüzey kompoziti aynı profilde karıştırıcı uç kullanılarak sabit hızda üretilmiştir. Üretilen kompozitlerin çekme dayanımları, farklı yüklerdeki aşınma dirençleri ve sertlikleri belirlenmiştir. Ayrıca optik ve SEM mikroskoplar ile mikroyapı, kırık yüzey ve aşınma yüzeyi analizleri ile element haritalaması yapılmıştır. En düşük çekme dayanımı takviyesiz alaşımda elde edilirken TiB2, nano grafen ve B4C ilaveli yüzey kompozitlerin dayanımı artmıştır. Mikroyapılarda herhangi bir gözenek ve boşluk tespit edilmemiştir Kırık yüzeylerde takviye elemanı arttıkça gevrek kırılmaların meydana geldiği görülmüştür.
Kaynakça
- [1] Z. Hao, Y. Ju, L. Chen, Тhe Use of Aluminium and Magnesium Alloys in Automotive Lightweight Technologies, J. Mech. Sci. Technol. 37 (2023) 4615–4622. https://doi.org/10.1007/s12206-023-0712-2.
- [2] S. Thanikodi, A.S.F. Britto, V.S.N.C. Dattu, S. Al Obaid, S. Alfarraj, M.A. Kalam, Machining and mechanical characterization of friction stir processed (FSP) surface hybrid composites (AA8014 + TiB2 + ZrO2), Int. J. Adv. Manuf. Technol. (2023). https://doi.org/10.1007/s00170-023-12198-z.
- [3] S.A. Kara, C. Özarpa, İ. Esen, H. Ahlatci, Y. Turen, Investigation of corrosion behavior of boron carbide reinforced AA7075 powder composites, J. Alloys Compd. 968 (2023). https://doi.org/10.1016/j.jallcom.2023.172198.
- [4] M.M. Jalilvand, Y. Mazaheri, A. Heidarpour, M. Roknian, Development of A356/Al 2 O 3 + SiO 2 surface hybrid nanocomposite by friction stir processing, Surf. Coatings Technol. 360 (2019) 121–132. https://doi.org/10.1016/j.surfcoat.2018.12.126.
- [5] H. DOĞAN, Y. MUTLU, Production of AA2024-Matrix B4C-SiC- and B4C-Y2O3-Particle-Reinforced Composites by Powder Metallurgy and Investigation of Their Mechanical Properties, Celal Bayar Üniversitesi Fen Bilim. Derg. 18 (2022) 321–330. https://doi.org/10.18466/cbayarfbe.1130031.
- [6] A. Fathy, D. Ibrahim, O. Elkady, M. Hassan, Evaluation of mechanical properties of 1050-Al reinforced with SiC particles via accumulative roll bonding process, J. Compos. Mater. 53 (2019) 209–218. https://doi.org/10.1177/0021998318781462.
- [7] H. ARIK, Toz Metalurjisi Metoduyla Al-SiC Kompozit Malzeme Üretimi ve Aşınma Özelliklerinin Araştırılması, Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol. 7 (2019) 741–754. https://doi.org/10.29109/gujsc.587637.
- [8] P. Samal, P.R. Vundavilli, A. Meher, M.M. Mahapatra, Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties, J. Manuf. Process. 59 (2020) 131–152. https://doi.org/10.1016/j.jmapro.2020.09.010.
- [9] L.F. Ali, R. Soundararajan, S. Jeyasurya, M. Kovarthanam, S.N. Prasath, Metallurgical assessment of AA7075 - T6 with x wt% tungsten carbide nanoparticle surface composites processed by FSP route, Mater. Today Proc. 45 (2021) 2152–2158. https://doi.org/10.1016/j.matpr.2020.10.003.
- [10] R. Dhayalan, K. Kalaiselvan, R. Sathiskumar, Characterization of AA6063/SiC-Gr surface composites produced by FSP technique, Procedia Eng. 97 (2014) 625–631. https://doi.org/10.1016/j.proeng.2014.12.291.
- [11] M.Z. Rahman, A.N. Siddiquee, Z.A. Khan, S. Ahmad, Multi-response optimization of FSP parameters on mechanical properties of surface composite, Mater. Today Proc. 62 (2022) 5–8. https://doi.org/10.1016/j.matpr.2022.01.379.
- [12] S. Li, M. Paidar, S. Liu, S. Mehrez, P.S. Kumar, V. Mohanavel, Importance of pin number on mechanical properties and wear performance during manufacturing of AL6061/316 surface composite via FSP, Mater. Lett. 326 (2022) 132919. https://doi.org/10.1016/j.matlet.2022.132919.
- [13] N. Kaya, C. Çetinkaya, H. Karakoç, H. Ada, Effect of process parameters of Al5083/SiC surface composites fabricated by FSP on microstructure, mechanical properties and wear behaviors, Mater. Chem. Phys. 315 (2024) 128991. https://doi.org/10.1016/j.matchemphys.2024.128991.
- [14] T. Thankachan, K.S. Prakash, V. Kavimani, Investigating the effects of hybrid reinforcement particles on the microstructural, mechanical and tribological properties of friction stir processed copper surface composites, Compos. Part B Eng. 174 (2019) 107057. https://doi.org/10.1016/j.compositesb.2019.107057.
- [15] M.A. Khan, R. Butola, N. Gupta, A review of nanoparticle reinforced surface composites processed by friction stir processing, J. Adhes. Sci. Technol. 37 (2023) 565–601. https://doi.org/10.1080/01694243.2022.2037054.
- [16] C.N. Shyam Kumar, R. Bauri, D. Yadav, Wear properties of 5083 Al-W surface composite fabricated by friction stir processing, Tribol. Int. 101 (2016) 284–290. https://doi.org/10.1016/j.triboint.2016.04.033.
- [17] H. Mehdi, R.S. Mishra, Consequence of reinforced SiC particles on microstructural and mechanical properties of AL6061 surface composites by multi-pass FSP, J. Adhes. Sci. Technol. 36 (2022) 1279–1298. https://doi.org/10.1080/01694243.2021.1964846.
- [18] W. Ma, M. Paidar, O.O. Ojo, S. Mehrez, A.M. Zain, A. Kulandaivel, V. Mohanavel, S. Kannan, Improving the wear resistance and mechanical properties of hybridized AZ80 Mg/CeO2+ZrO2 surface composite by friction stir processing: Effect of pin geometry, Vacuum. 212 (2023) 111980. https://doi.org/10.1016/j.vacuum.2023.111980.
- [19] L. Huang, M. Paidar, A. Mohd Zain, M.R.A. Refaai, S. Abdullaev, M. Šlapáková, Effect of processing environment during friction stir processing of AZ31/(ZrO2+CuO)p surface composite on the mechanical and tribological performance, J. Mater. Res. Technol. 28 (2024) 1891–1899. https://doi.org/10.1016/j.jmrt.2023.11.222.
- [20] E.B. Moustafa, A. V. Mikhaylovskaya, M.A. Taha, A.O. Mosleh, Improvement of the microstructure and mechanical properties by hybridizing the surface of AA7075 by hexagonal boron nitride with carbide particles using the FSP process, J. Mater. Res. Technol. 17 (2022) 1986–1999. https://doi.org/10.1016/j.jmrt.2022.01.150.
- [21] A. Sharma, D. Narsimhachary, V.M. Sharma, B. Sahoo, J. Paul, Surface modification of Al6061-SiC surface composite through impregnation of graphene, graphite & carbon nanotubes via FSP: A tribological study, Surf. Coatings Technol. 368 (2019) 175–191. https://doi.org/10.1016/j.surfcoat.2019.04.001.
- [22] Ö.B. Acımert, S. Murat, A.K. Dayauç, K. Tevfik, Farklı Pasolarda Uygulanmış Sürtünme Karıştırma Prosesinin Al- 5083 ’ ün Tribolojik Özellikleri Üzerindeki Etkisinin İ ncelenmesi Investigation of the Effect of Friction Stir Process Performed in Different Passes on the Tribological Properties of Al-5083, (n.d.) 0–2.
- [23] S. Bharti, N.D. Ghetiya, K.M. Patel, A review on manufacturing the surface composites by friction stir processing, Mater. Manuf. Process. 36 (2021) 135–170. https://doi.org/10.1080/10426914.2020.1813897.
- [24] H. Gökmeşe, H.B. KARADAĞ, Toz Metal AA 2014-SiC-B4C Kompozit/Hibrit Malzemelerinin Mikroyapı ve Mekanik Özelliklerinin İncelenmesi, Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol. (2018) 385–398. https://doi.org/10.29109/http-gujsc-gazi-edu-tr.364857.
- [25] M. Narimani, B. Lotfi, Z. Sadeghian, Evaluation of the microstructure and wear behaviour of AA6063-B4C/TiB2 mono and hybrid composite layers produced by friction stir processing, Surf. Coatings Technol. 285 (2016) 1–10. https://doi.org/10.1016/j.surfcoat.2015.11.015.
- [26] M. Patel, J. Murugesan, Fretting Wear and Corrosion Behaviour of an Al–ZrO2/Ni Hybrid Composite Developed by Friction Stir Processing, Trans. Indian Inst. Met. 75 (2022) 1525–1534. https://doi.org/10.1007/s12666-022-02527-3.
- [27] Karakoca, Y. E., & AYTAÇ, A. (2022). Investigation of Drillability of CFRP/Al 7075 Stack. Mechanics, 28(6), 430-438. https://doi.org/10.5755/j02.mech.31038
- [28] B. Basu, G.B. Raju, A.K. Suri, Processing and properties of monolithic TiB2 based materials, Int. Mater. Rev. 51 (2006) 352–374. https://doi.org/10.1179/174328006X102529.
- [29] Z.L. Chao, Z.W. Wang, L.T. Jiang, S.P. Chen, B.J. Pang, R.W. Zhang, S.Q. Du, G.Q. Chen, Q. Zhang, G.H. Wu, Microstructure and mechanical properties of B4C/2024Al functionally gradient composites, Mater. Des. 215 (2022) 1–12. https://doi.org/10.1016/j.matdes.2022.110449.
- [30] O. ALTUNTAŞ, Taguchi Based Gray Relational Analysis of Production Parameters of Al7075/B4C/GNP’s Hybrid Composites, Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol. 11 (2023) 850–856. https://doi.org/10.29109/gujsc.1348957.
- [31] P. Cataldi, A. Athanassiou, I.S. Bayer, Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications, Appl. Sci. 8 (2018). https://doi.org/10.3390/app8091438.
- [32] O. Altuntas, M. Ozer, G. Altuntas, A. Ozer, Investigation of the microstructure, hardness and electrical conductivity properties of Fe/Graphene compacts, Mater. Sci. Technol. (United Kingdom). 39 (2023) 2670–2679. https://doi.org/10.1080/02670836.2023.2213554.
- [33] S.K. Patel, V.P. Singh, B.S. Roy, B. Kuriachen, Recent research progresses in Al-7075 based in-situ surface composite fabrication through friction stir processing: A review, Mater. Sci. Eng. B. 262 (2020) 114708. https://doi.org/10.1016/j.mseb.2020.114708.
- [34] A. Kumar, V. Kumar, A review of recent progress in the fabrication of surface composites through friction stir processing, Mater. Today Proc. 63 (2022) 494–503. https://doi.org/10.1016/j.matpr.2022.03.648.
- [35] R.K. Arya, R. Kumar, A. Telang, A.S. Yadav, Effect of Microstructure on Mechanical Behaviors of Al6061 Metal Matrix Composite Reinforced with Silicon Nitride (Si3N4) and Silicon Carbide (SiC) Micro Particles, Silicon. 15 (2023) 5911–5923. https://doi.org/10.1007/s12633-023-02468-6.
- [36] R.F. Guo, S.M. Chen, P. Shen, Influence of Si, Ti, and Cu as alloying elements on the wettability and reactivity of an Al/B4C system, J. Mater. Res. Technol. 27 (2023) 6104–6116. https://doi.org/10.1016/j.jmrt.2023.11.058.
- [37] A. Jamali, S.E. Mirsalehi, Investigation on effects of traverse speed and number of passes on mechanical and abrasive properties of AA7075-T6/ZrO2 surface nanocomposite produced using friction stir processing, Weld. World. 66 (2022) 2297–2313. https://doi.org/10.1007/s40194-022-01331-3.
- [38] İ. ŞİMŞEK, The Effect of B4C Amount on Wear Behaviors of Al-Graphite/B4C Hybrid Composites Produced by Mechanical Alloying, J. Boron. 4 (2019) 100–106. https://doi.org/10.30728/boron.556707.
- [39] S. Singh, K. Pal, Effect of texture evolution on mechanical and damping properties of SiC/ZnAl 2 O 4 /Al composite through friction stir processing, J. Mater. Res. Technol. 8 (2019) 222–232. https://doi.org/10.1016/j.jmrt.2017.07.006.
- [40] V. Sharma, U. Prakash, B.V.M. Kumar, Surface composites by friction stir processing: A review, J. Mater. Process. Technol. 224 (2015) 117–134. https://doi.org/10.1016/j.jmatprotec.2015.04.019.
- [41] T. Senthilnathan, K. Balachandar, Mechanical and microstructure evaluation of novel hybrid TiB2/B4C aluminium metal matrix composite, Mater. Res. Express. 10 (2023). https://doi.org/10.1088/2053-1591/acda18.
- [42] E.B. Moustafa, A. Melaibari, G. Alsoruji, A.M. Khalil, A.O. Mosleh, Al 5251-based hybrid nanocomposite by FSP reinforced with graphene nanoplates and boron nitride nanoparticles: Microstructure, wear, and mechanical characterization, Nanotechnol. Rev. 10 (2021) 1752–1765. https://doi.org/10.1515/ntrev-2021-0108.
- [43] M. Çelebi, A. Çanakçı, O. Güler, S. Özkaya, A.H. Karabacak, K.A. Arpacı, Investigation of Microstructure, Hardness and Wear Properties of Hybrid Nanocomposites with Al2024 Matrix and Low Contents of B4C and h-BN Nanoparticles Produced by Mechanical Milling Assisted Hot Pressing, Jom. 74 (2022) 4449–4461. https://doi.org/10.1007/s11837-022-05441-7.
- [44] I. Şahin, A. Bektaş, F. Gül, H. Çinici, Modeling of wear behavior of Al/B4C composites produced by powder metallurgy, Mater. Test. 59 (2017) 491–496. https://doi.org/10.3139/120.111028.
- [45] M.C. Şenel, M. Demİr, Effect of Induction Heat Treatment Process and Graphene/B4C Amount on the Tribological and Mechanical Properties of Al6061 Hybrid Composites, Jom. 75 (2023) 2554–2568. https://doi.org/10.1007/s11837-023-05790-x.
- [46] N.F.B. Wakhi Anuar, M.S. Salleh, M.Z. Omar, W.F.H.W. Zamri, A. Md Ali, S. Samat, Wear properties of graphene-reinforced aluminium metal matrix composite: A review, Rev. Adv. Mater. Sci. 62 (2023). https://doi.org/10.1515/rams-2022-0326.
- [47] R. Harichandran, N. Selvakumar, Effect of nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process, Arch. Civ. Mech. Eng. 16 (2016) 147–158. https://doi.org/10.1016/j.acme.2015.07.001.
- [48] S. Rengifo, C. Zhang, S. Harimkar, B. Boesl, A. Agarwal, Tribological Behavior of Spark Plasma Sintered Aluminum-Graphene Composites at Room and Elevated Temperatures, Technologies. 5 (2017) 4. https://doi.org/10.3390/technologies5010004.
- [49] H. min Xia, L. Zhang, Y. chao Zhu, N. Li, Y. qi Sun, J. dong Zhang, H. zhong Ma, Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater. 27 (2020) 1295–1300. https://doi.org/10.1007/s12613-020-2009-0.