Derleme
BibTex RIS Kaynak Göster

Eklemeli İmalat Teknolojilerinin Havacılık Sektöründe Enerji Verimliliğini Artırma ve Emisyon Azaltma Potansiyeli

Yıl 2024, Cilt: 12 Sayı: 2, 548 - 566, 29.06.2024
https://doi.org/10.29109/gujsc.1437824

Öz

Havacılık sektörü, 2050 net sıfır emisyon hedeflerine ulaşmada kendi alanına düşen sorumluluklar doğrultusunda havacılığı ve hava araçlarını ilgilendiren tüm alanlarda iklim ve diğer çevresel etkileri azaltıcı tedbirler anlamında sürdürülebilir, verimli ve döngüsel ekonomi modellerine uygun bir yapıya dönüşüme odaklanmaktadır. Bu makalenin amacı, bu yapı üzerinde büyük öneme sahip malzeme bilimi çerçevesinde, eklemeli imalat (Eİ) teknolojilerinin havacılık sektöründeki enerji verimliliği ve emisyonlar üzerindeki potansiyel etkilerini incelemektir. Uçak parçalarının üretiminde geleneksel üretim yöntemlerinin, enerji tüketimi ve malzeme atığı konusunda sınırlamaları mevcuttur. Eklemeli imalatın hafif uçak parçaları, motor parçaları ve diğer kritik bileşenlerin üretiminde uygulama potansiyeli ele alınmıştır. Ayrıca, eklemeli imalatın sürdürülebilir malzeme kullanımı ve üretim sürecinin optimize edilmesi konularındaki katkıları vurgulanmıştır. Bu durumun, malzeme kaynaklarının verimli kullanılmasını teşvik ederken, enerji tüketiminin de azaltılmasına yardımcı olacağı değerlendirilmiştir.
Bu çalışmada enerji verimliliğinin artırılması ve emisyon azaltılmasına odaklanarak havacılık sektörü için Eİ süreçlerine ilişkin sistematik bir literatür taraması yapılmıştır. Böylece havacılık sektöründe emisyonları azaltma ve enerji verimliliğini artırma konularında gelinen son aşamalar hakkında bilgiler sunulmuştur. Araştırma, Eİ ile üretilen hafif ve uygun tasarımlı ürünler sayesinde enerji tüketiminin ve havacılık emisyonlarının düşürülebileceğini böylece hava araçlarının çevresel etkilerinin azaltılmasına katkı sağlanabileceğini göstermektedir.

Kaynakça

  • 1. Gökhan, Ö. 2020. Eklemeli üretim teknolojileri üzerine bir derleme, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), p 606-621.
  • 2. Pereira, T., Kennedy, J.V.Potgieter, J. 2019. A comparison of traditional manufacturing vs additive manufacturing, the best method for the job, Procedia Manufacturing, 30 11-18. DOI: 10.1016/j.promfg.2019.02.003
  • 3. Achillas, C., Tzetzis, D.Raimondo, M.O. 2017. Alternative production strategies based on the comparison of additive and traditional manufacturing technologies, International Journal of Production Research, 55(12), p 3497-3509. DOI: 10.1080/00207543.2017.1282645
  • 4. Gisario, A., Kazarian, M., Martina, F.Mehrpouya, M. 2019. Metal additive manufacturing in the commercial aviation industry: A review, Journal of Manufacturing Systems, 53 124-149. DOI: 10.1016/j.jmsy.2019.08.005
  • 5. Najmon, J.C., Raeisi, S.Tovar, A. 2019. Review of additive manufacturing technologies and applications in the aerospace industry, Additive manufacturing for the aerospace industry, 7-31. DOI: 10.1016/B978-0-12-814062-8.00002-9
  • 6. Gibson, I., Rosen, D., Stucker, B., Khorasani, M., Gibson, I., Rosen, D., Stucker, B.Khorasani, M. 2021. Design for additive manufacturing, Additive manufacturing technologies, 555-607. DOI: 10.1007/978-3-030-56127-7_19 7. Additive Applications. https://www.ge.com/additive/industry-overview (Erişim tarihi 29.01.2024).
  • 8. Additive Manufacturing Applications. https://optomec.com/additive-manufacturing/ (Erişim tarihi 29.01.2024).
  • 9. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Hui, D. 2018. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143 172-196. DOI: 10.1016/j.compositesb.2018.02.012
  • 10. Rejeski, D., Zhao, F.Huang, Y. 2018. Research needs and recommendations on environmental implications of additive manufacturing, Additive Manufacturing, 19 21-28. DOI: 10.1016/j.addma.2017.10.019
  • 11. Airbus-Commercial-Aircraft https://www.airbus.com/sites/g/files/jlcbta136/files/2021-07/GMF-2019-2038-Airbus-Commercial-Aircraft-book (Erişim tarihi 29.01.2024).
  • 12. Future Of Aviation. https://www.icao.int/Meetings/FutureOfAviation/Pages/default.aspx (Erişim tarihi 19.01.2024).
  • 13. Fan, W., Sun, Y., Zhu, T.Wen, Y. 2012. Emissions of HC, CO, NOx, CO2, and SO2 from civil aviation in China in 2010, Atmospheric Environment, 56 52-57. DOI: 10.1016/j.atmosenv.2012.03.052
  • 14. Nickels, L. 2015. AM and aerospace: an ideal combination, Metal Powder Report, 70(6), p 300-303. DOI: 10.1016/j.mprp.2015.06.005
  • 15. Ford, S.Despeisse, M. 2016. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges, Journal of cleaner Production, 137 1573-1587. DOI: 10.1016/j.jclepro.2016.04.150
  • 16. Sürmen, H.K. 2019. Eklemeli İmalat (3b Baski): Teknolojiler Ve Uygulamalar, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), p 373-392.
  • 17. Liu, Z., Li, C., Fang, X.Guo, Y. 2018. Energy consumption in additive manufacturing of metal parts, Procedia Manufacturing, 26 834-845. DOI: 10.1016/j.promfg.2018.07.104
  • 18. Garcia, F.L., Moris, V.A.d.S., Nunes, A.O.Silva, D.A.L. 2018. Environmental performance of additive manufacturing process–an overview, Rapid Prototyping Journal, 24(7), p 1166-1177. DOI: 10.1108/RPJ-05-2017-0108
  • 19. Agrawal, R. 2019. State of art review on sustainable additive manufacturing, Rapid Prototyping Journal, 25(6), p 1045-1060. DOI: 10.1108/RPJ-04-2018-0085
  • 20. Mohd Yusuf, S., Cutler, S.Gao, N. 2019. The impact of metal additive manufacturing on the aerospace industry, Metals, 9(12), p 1286. DOI: 10.3390/met9121286
  • 21. Monteiro, H., Carmona-Aparicio, G., Lei, I.Despeisse, M. 2022. Energy and material efficiency strategies enabled by metal additive manufacturing–A review for the aeronautic and aerospace sectors, Energy Reports, 8 298-305. DOI: 10.1016/j.egyr.2022.01.035
  • 22. Data, R. 2019. Additive Manufacturing Market to Reach USD 23.33 Billion by 2026.
  • 23. Oliveira, J., Santos, T.Miranda, R. 2020. Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice, Progress in Materials Science, 107 100590. DOI: 10.1016/j.pmatsci.2019.100590
  • 24. Sames, W.J., List, F., Pannala, S., Dehoff, R.R.Babu, S.S. 2016. The metallurgy and processing science of metal additive manufacturing, International materials reviews, 61(5), p 315-360. DOI: 10.1080/09506608.2015.1116649
  • 25. DebRoy, T., Mukherjee, T., Milewski, J., Elmer, J., Ribic, B., Blecher, J.Zhang, W. 2019. Scientific, technological and economic issues in metal printing and their solutions, Nature materials, 18(10), p 1026-1032. DOI: 10.1038/s41563-019-0408-2
  • 26. Çelik, K.Özkan, A. 2017. Eklemeli imalat yöntemleri ile üretim ve onarım uygulamaları, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 5(1), p 107-121.
  • 27. Liu, R., Wang, Z., Sparks, T., Liou, F.Newkirk, J. 2017. Aerospace applications of laser additive manufacturing, in Laser additive manufacturing, Elsevier, p. 351-371. DOI: 10.1016/B978-0-08-100433-3.00013-0
  • 28. M., O'Brien, 2018. Existing standards as the framework to qualify additive manufacturing of metals, IEEE Aerospace Conferenceof Conference.: IEEE.
  • 29. George, C. 2017. Marshall Space Flight Center. Standard for Additively Manufactured Spaceflight Hardware by Laser Powder Bed Fusion in Metals. NASA Marshall Space Flight Center Huntsville, AL, USA.
  • 30. Kumar, L.J.Krishnadas Nair, C. 2017. Current trends of additive manufacturing in the aerospace industry, Advances in 3D printing & additive manufacturing technologies, 39-54. DOI: 10.1007/978-981-10-0812-2_4
  • 31. Jupiter Orbit Insertion 2016.—Press Kit, J.P.L.N.P., CA, USA.
  • 32. Kellner, T. 2017. An epiphany of disruption: GE additive chief explains how 3D printing will upend manufacturing, GE Reports, 13
  • 33. Najmon, J.C., Raeisi, S.Tovar, A. 2019. 2.1 Aerospace requirements and opportunities for additive manufacturing, Additive Manufacturing for the Aerospace Industry, 7. DOI: 10.1016/B978-0-12-814062-8.00002-9
  • 34. Xometry T., 2023. 6 Main Advantages of 3D Printing in the Aircraft Industry. https://www.xometry.com/resources/3d-printing/advantages-of-3d-printing-in-the-aircraft-industry/(Erişim tarihi 24.01.2024).
  • 35. Manufacturing, A., 2018. Siemens Uses Innovative Technology to Produce Gas Turbines., Press–Siemens Global Website. Munich.
  • 36. Horn, T.J.Harrysson, O.L. 2012. Overview of current additive manufacturing technologies and selected applications, Science progress, 95(3), p 255-282. DOI: 10.3184/003685012X13420984463047
  • 37. Morrow, W., Qi, H., Kim, I., Mazumder, J.Skerlos, S. 2007. Environmental aspects of laser-based and conventional tool and die manufacturing, Journal of Cleaner Production, 15(10), p 932-943. DOI: 10.1016/j.jclepro.2005.11.030
  • 38. Huang, S.H., Liu, P., Mokasdar, A.Hou, L. 2013. Additive manufacturing and its societal impact: a literature review, The International journal of advanced manufacturing technology, 67 1191-1203. DOI: 10.1007/s00170-012-4558-5
  • 39. Munsch, M., Wycisk, E., Kranz, J., Seyda, V.Claus, E. 2012. Functional products through laser additive manufacturing of TiAl6V4, in Workshop LAM Laser Additive Manufacturing.of Conference.
  • 40. Daisy C. 2013. Jet engine makers get lift from 3-D printing technology https://edition.cnn.com/travel/article/leap-engine-3-d-printing/index.html. (Erişim tarihi 30.01.2024).
  • 41. IEA World energy outlook 2022. Conference.: IEA Paris, France.
  • 42. Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., Cresko, J.Masanet, E. 2016. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components, Journal of cleaner production, 135 1559-1570. DOI: 10.1016/j.jclepro.2015.04.109
  • 43. 2023. Use of energy explained. https://www.eia.gov/outlooks/ieo/pdf/transportation. (Erişim tarihi 28.01.2024).
  • 44. Façanha, C., Blumberg, K.Miller, J. 2012. Global transportation energy and climate roadmap, International Council on Clean Transportation.
  • 45. Dornfeld, D. 2010. Green Manufacturing: Degrees of Perfection.
  • 46. Allwood, J.M., Ashby, M.F., Gutowski, T.G.Worrell, E. 2011. Material efficiency: A white paper, Resources, conservation and recycling, 55(3), p 362-381. DOI: 10.1016/j.resconrec.2010.11.002
  • 47. Kaufmann, M. 2008. Cost/weight optimization of aircraft structures (Doctoral dissertation, KTH).
  • 48. Cole, W. 2004. Boeing engineers and technologists are constantly developing better ways to design and make products, Boeing Frontiers.
  • 49. Herzog, D., Seyda, V., Wycisk, E.Emmelmann, C. 2016. Additive manufacturing of metals, Acta Materialia, 117 371-392. DOI: 10.1016/j.actamat.2016.07.019
  • 50. Little, M. 2010. Redefining What's Possible, Proceedings of the American Philosophical Society, 154(2), p 192-200.
  • 51. Tang, Y., Mak, K.Zhao, Y.F. 2016. A framework to reduce product environmental impact through design optimization for additive manufacturing, Journal of Cleaner Production, 137 1560-1572. DOI: 10.1016/j.jclepro.2016.06.037
  • 52. Gebler, M., Uiterkamp, A.J.S.Visser, C. 2014. A global sustainability perspective on 3D printing technologies, Energy policy, 74 158-167. DOI: 10.1016/j.enpol.2014.08.033
  • 53. Möller, M., Vykhtar, B., Emmelmann, C., Li, Z., Huang, J. 2019. Sustainable Production of Aircraft Systems: Carbon Footprint and Cost Potential of Additive Manufacturing in Aircraft Systems. In 8th international Workshop on Aircraft System Technology (AST), Hamburg.
  • 54. Hettesheimer, T., Hirzel, S.Roß, H.B. 2018. Energy savings through additive manufacturing: an analysis of selective laser sintering for automotive and aircraft components, Energy Efficiency, 11 1227-1245. DOI: /10.1007/s12053-018-9620-1
  • 55. Paris, H., Mokhtarian, H., Coatanéa, E., Museau, M.Ituarte, I.F. 2016. Comparative environmental impacts of additive and subtractive manufacturing technologies, CIRP Annals, 65(1), p 29-32. DOI: 10.1016/j.cirp.2016.04.036
  • 56. Peng, S., Li, T., Wang, X., Dong, M., Liu, Z., Shi, J.Zhang, H. 2017. Toward a sustainable impeller production: Environmental impact comparison of different impeller manufacturing methods, Journal of Industrial Ecology, 21(S1), p S216-S229. DOI: 10.1111/jiec.12628
  • 57. Wilson, J.M., Piya, C., Shin, Y.C., Zhao, F.Ramani, K. 2014. Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis, Journal of Cleaner Production, 80 170-178. DOI: 10.1016/j.jclepro.2014.05.084
  • 58. Liu, Z., Jiang, Q., Cong, W., Li, T.Zhang, H.-C. 2018. Comparative study for environmental performances of traditional manufacturing and directed energy deposition processes, International Journal of Environmental Science and Technology, 15 2273-2282. DOI: 10.1007/s13762-017-1622-6
  • 59. Walachowicz, F., Bernsdorf, I., Papenfuss, U., Zeller, C., Graichen, A., Navrotsky, V., Rajvanshi, N.Kiener, C. 2017. Comparative energy, resource and recycling lifecycle analysis of the industrial repair process of gas turbine burners using conventional machining and additive manufacturing, Journal of Industrial Ecology, 21(S1), p S203-S215. DOI: 10.1111/jiec.12637
  • 60. Chen, D., Heyer, S., Ibbotson, S., Salonitis, K., Steingrímsson, J.G.Thiede, S. 2015. Direct digital manufacturing: definition, evolution, and sustainability implications, Journal of Cleaner Production, 107 615-625. DOI: 10.1016/j.jclepro.2015.05.009
  • 61. Kellens, K., Yasa, E., Dewulf, W., Kruth, J.Duflou, J. (Year) Energy and resource efficiency of SLS/SLM processes. in 2011 International Solid Freeform Fabrication Symposium.of Conference.: University of Texas at Austin. DOI: 10.26153/tsw/15272
  • 62. Mami, F., Revéret, J.P., Fallaha, S.Margni, M. 2017. Evaluating eco‐efficiency of 3D printing in the aeronautic industry, Journal of Industrial Ecology, 21(S1), p S37-S48. DOI: 10.1111/jiec.12693
  • 63. Östlin, J., Sundin, E.Björkman, M. 2009. Product life-cycle implications for remanufacturing strategies, Journal of cleaner production, 17(11), p 999-1009. DOI: 10.1016/j.jclepro.2009.02.021
  • 64. Bi, G.Gasser, A. 2011. Restoration of nickel-base turbine blade knife-edges with controlled laser aided additive manufacturing, Physics Procedia, 12 402-409. DOI: 10.1016/j.phpro.2011.03.051
  • 65. Kaierle, S., Overmeyer, L., Alfred, I., Rottwinkel, B., Hermsdorf, J., Wesling, V.Weidlich, N. 2017. Single-crystal turbine blade tip repair by laser cladding and remelting, CIRP Journal of Manufacturing Science and Technology, 19 196-199. DOI: 10.1016/j.cirpj.2017.04.001
  • 66. Xue, L., Donovan, M., Li, Y., Chen, J., Wang, S.Campbell, G. (Year) Integrated rapid 3D mapping and laser additive repair of gas turbine engine components. in International Congress on Applications of Lasers & Electro-Optics.of Conference.: AIP Publishing. DOI: 10.2351/1.5062894
  • 67. Kelbassa, I., Gasser, A., Wissenbach, K. 2004. Laser cladding as a repair technique for BLISKs out of titanium and nickel base alloys used in aero engines. In Pacific International Conference on Applications of Lasers and Optics. Laser Institute of America.
  • 68. Richter, K. H., Orban, S., Nowotny, S. 2004. Laser cladding of the titanium alloy Ti6242 to restore damaged blades. In International Congress on Applications of Lasers & Electro-Optics. Laser Institute of America.
  • 69. Lin, C.-M., Chandra, A., Morales-Rivas, L., Huang, S.-Y., Wu, H.-C., Wu, Y.-E.Tsai, H.-L. 2014. Repair welding of ductile cast iron by laser cladding process: microstructure and mechanical properties, International journal of cast metals research, 27(6), p 378-383. DOI: 10.1179/1743133614Y.0000000126
  • 70. Technologies, S. 2020. 4 Benefits of Lightweighting. https://sybridge.com/lightweighting-benefits/.(Erişim tarihi 30.01.2024).
  • 71. Alami, A.H., Olabi, A.G., Alashkar, A., Alasad, S., Aljaghoub, H., Rezk, H.Abdelkareem, M.A. 2023. Additive manufacturing in the aerospace and automotive industries: Recent trends and role in achieving sustainable development goals, Ain Shams Engineering Journal, 14(11), p 102516. DOI: 10.1016/j.asej.2023.102516
  • 72. Zhang, H., Nagel, J.K., Al-Qas, A., Gibbons, E.Lee, J.J.-Y. 2018. Additive manufacturing with bioinspired sustainable product design: a conceptual model, Procedia Manufacturing, 26 880-891. DOI: 10.1016/j.promfg.2018.07.113
  • 73. Yusuf, S., Cutler, S.Gao, N., Review: The impact of metal additive manufacturing on the aerospace industry. Metals 9 (12): 1286. 2019. DOI: 10.3390/met9121286
  • 74. Campbell, T., Williams, C., Ivanova, O.Garrett, B. 2011. Could 3D printing change the world, Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council, Washington, DC, 3 1-16.
  • 75. Reeves, P. 2009. Additive Manufacturing–A supply chain wide response to economic uncertainty and environmental sustainability, Econolyst Limited, The Silversmiths, Crown Yard, Wirksworth, Derbyshire, DE4 4ET, UK.
  • 76. Kate, D. 2015. Can We 3D Print our Way to Sustainability?. http://www.earthisland.org, (Erişim tarihi 30.01.2024).
  • 77. Yoon, H.-S., Lee, J.-Y., Kim, H.-S., Kim, M.-S., Kim, E.-S., Shin, Y.-J., Chu, W.-S.Ahn, S.-H. 2014. A comparison of energy consumption in bulk forming, subtractive, and additive processes: Review and case study, International Journal of Precision Engineering and Manufacturing-Green Technology, 1 261-279. DOI: 10.1007/s40684-014-0033-0
  • 78. Umeda, S., Nakano, M., Mizuyama, H., Hibino, N., Kiritsis, D., Von Cieminski, G. 2015. Advances in Production Management Systems: Innovative Production Management Towards Sustainable Growth: IFIP WG 5.7 International Conference, APMS 2015, Proceedings, Part I Tokyo, Japan, 459.
  • 79. Girdwood, R., Bezuidenhout, M., Hugo, P., Conradie, P., Oosthuizen, G.Dimitrov, D. 2017. Investigating components affecting the resource efficiency of incorporating metal additive manufacturing in process chains, Procedia Manufacturing, 8 52-58. DOI: 10.1016/j.promfg.2017.02.006
  • 80. Kianian, B. 2017. Wohlers report 2017: 3d printing and additive manufacturing state of the industry, annual worldwide progress report: Chapters titles: The middle east, and other countries.
  • 81. Wohler, T. 2016. Executive summary of the Wohlers Report 2016, Wohlers Associates, Fort Collins, Colorado.
  • 82. Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B.P.Pennington, D.W. 2004. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications, Environment international, 30(5), p 701-720. DOI: 10.1016/j.envint.2003.11.005
  • 83. Villamil, C., Nylander, J., Hallstedt, S. I., Schulte, J., Watz, M. 2018. Additive manufacturing from a strategic sustainability perspective. In DS 92: Proceedings of the DESIGN 2018 15th International Design Conference (pp. 1381-1392).
  • 84. Wohlers, T. 2013. State of additive manufacturing, US Manufacturing Competitiveness Initiative Dialogue, 16.
  • 85. Frazier, W.E. 2014. Metal additive manufacturing: a review, Journal of Materials Engineering and performance, 23 1917-1928. DOI: 10.1007/s11665-014-0958-z
  • 86. Gausemeier, J., Echterhoff, N.Wall, M. 2013. Thinking ahead the Future of Additive Manufacturing–Innovation Roadmapping of Required Advancements, University of Paderborn.
  • 87. Joint EASA-FAA Additive Manufacturing Workshop 2023 https://www.easa.europa.eu/en/newsroom-and-events/events/joint-easa-faa-additive-manufacturing-workshop-2023. (Erişim tarihi 30.01.2024).
  • 88. Jones, C. P., Robertson, E. H., Koelbl, M. B., Singer, C. 2016. Additive manufacturing a liquid hydrogen rocket engine (No. M16-5225).
  • 89. Waller, J. M. 2018. Nondestructive testing of additive manufactured metal parts used in aerospace applications (No. JSC-E-DAA-TN49270).

The Potential Impact of Additive Manufacturing Technologies on Energy Efficiency and Emissions in the Aviation Industry

Yıl 2024, Cilt: 12 Sayı: 2, 548 - 566, 29.06.2024
https://doi.org/10.29109/gujsc.1437824

Öz

The aviation sector is focusing on transitioning towards sustainable, efficient, and circular economy models in all areas related to aviation and aircraft, in line with its responsibilities towards achieving the 2050 net-zero emission goals. This article aims to examine the potential impact of additive manufacturing (AM) technologies on energy efficiency and emissions in the aviation sector within the framework of material science, which holds significant importance in this structure. Traditional manufacturing methods have limitations regarding energy consumption and material waste in aircraft parts production. The application potential of additive manufacturing in producing lightweight aircraft parts, engine components, and other critical elements has been addressed. Additionally, the contributions of additive manufacturing to sustainable material usage and optimization of the production process have been emphasized. It is evaluated that this situation will promote efficient utilization of material resources while also reducing energy consumption. This study systematically reviews the literature on AM processes for the aviation sector with a focus on enhancing energy efficiency and reducing emissions. Thus, it provides insights into the latest developments in reducing emissions and increasing energy efficiency in the aviation sector. The research demonstrates that through the production of lightweight and well-designed products using AM, energy consumption and aviation emissions can be reduced, thereby contributing to mitigating the environmental impact of aircraft.

Kaynakça

  • 1. Gökhan, Ö. 2020. Eklemeli üretim teknolojileri üzerine bir derleme, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), p 606-621.
  • 2. Pereira, T., Kennedy, J.V.Potgieter, J. 2019. A comparison of traditional manufacturing vs additive manufacturing, the best method for the job, Procedia Manufacturing, 30 11-18. DOI: 10.1016/j.promfg.2019.02.003
  • 3. Achillas, C., Tzetzis, D.Raimondo, M.O. 2017. Alternative production strategies based on the comparison of additive and traditional manufacturing technologies, International Journal of Production Research, 55(12), p 3497-3509. DOI: 10.1080/00207543.2017.1282645
  • 4. Gisario, A., Kazarian, M., Martina, F.Mehrpouya, M. 2019. Metal additive manufacturing in the commercial aviation industry: A review, Journal of Manufacturing Systems, 53 124-149. DOI: 10.1016/j.jmsy.2019.08.005
  • 5. Najmon, J.C., Raeisi, S.Tovar, A. 2019. Review of additive manufacturing technologies and applications in the aerospace industry, Additive manufacturing for the aerospace industry, 7-31. DOI: 10.1016/B978-0-12-814062-8.00002-9
  • 6. Gibson, I., Rosen, D., Stucker, B., Khorasani, M., Gibson, I., Rosen, D., Stucker, B.Khorasani, M. 2021. Design for additive manufacturing, Additive manufacturing technologies, 555-607. DOI: 10.1007/978-3-030-56127-7_19 7. Additive Applications. https://www.ge.com/additive/industry-overview (Erişim tarihi 29.01.2024).
  • 8. Additive Manufacturing Applications. https://optomec.com/additive-manufacturing/ (Erişim tarihi 29.01.2024).
  • 9. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Hui, D. 2018. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143 172-196. DOI: 10.1016/j.compositesb.2018.02.012
  • 10. Rejeski, D., Zhao, F.Huang, Y. 2018. Research needs and recommendations on environmental implications of additive manufacturing, Additive Manufacturing, 19 21-28. DOI: 10.1016/j.addma.2017.10.019
  • 11. Airbus-Commercial-Aircraft https://www.airbus.com/sites/g/files/jlcbta136/files/2021-07/GMF-2019-2038-Airbus-Commercial-Aircraft-book (Erişim tarihi 29.01.2024).
  • 12. Future Of Aviation. https://www.icao.int/Meetings/FutureOfAviation/Pages/default.aspx (Erişim tarihi 19.01.2024).
  • 13. Fan, W., Sun, Y., Zhu, T.Wen, Y. 2012. Emissions of HC, CO, NOx, CO2, and SO2 from civil aviation in China in 2010, Atmospheric Environment, 56 52-57. DOI: 10.1016/j.atmosenv.2012.03.052
  • 14. Nickels, L. 2015. AM and aerospace: an ideal combination, Metal Powder Report, 70(6), p 300-303. DOI: 10.1016/j.mprp.2015.06.005
  • 15. Ford, S.Despeisse, M. 2016. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges, Journal of cleaner Production, 137 1573-1587. DOI: 10.1016/j.jclepro.2016.04.150
  • 16. Sürmen, H.K. 2019. Eklemeli İmalat (3b Baski): Teknolojiler Ve Uygulamalar, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), p 373-392.
  • 17. Liu, Z., Li, C., Fang, X.Guo, Y. 2018. Energy consumption in additive manufacturing of metal parts, Procedia Manufacturing, 26 834-845. DOI: 10.1016/j.promfg.2018.07.104
  • 18. Garcia, F.L., Moris, V.A.d.S., Nunes, A.O.Silva, D.A.L. 2018. Environmental performance of additive manufacturing process–an overview, Rapid Prototyping Journal, 24(7), p 1166-1177. DOI: 10.1108/RPJ-05-2017-0108
  • 19. Agrawal, R. 2019. State of art review on sustainable additive manufacturing, Rapid Prototyping Journal, 25(6), p 1045-1060. DOI: 10.1108/RPJ-04-2018-0085
  • 20. Mohd Yusuf, S., Cutler, S.Gao, N. 2019. The impact of metal additive manufacturing on the aerospace industry, Metals, 9(12), p 1286. DOI: 10.3390/met9121286
  • 21. Monteiro, H., Carmona-Aparicio, G., Lei, I.Despeisse, M. 2022. Energy and material efficiency strategies enabled by metal additive manufacturing–A review for the aeronautic and aerospace sectors, Energy Reports, 8 298-305. DOI: 10.1016/j.egyr.2022.01.035
  • 22. Data, R. 2019. Additive Manufacturing Market to Reach USD 23.33 Billion by 2026.
  • 23. Oliveira, J., Santos, T.Miranda, R. 2020. Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice, Progress in Materials Science, 107 100590. DOI: 10.1016/j.pmatsci.2019.100590
  • 24. Sames, W.J., List, F., Pannala, S., Dehoff, R.R.Babu, S.S. 2016. The metallurgy and processing science of metal additive manufacturing, International materials reviews, 61(5), p 315-360. DOI: 10.1080/09506608.2015.1116649
  • 25. DebRoy, T., Mukherjee, T., Milewski, J., Elmer, J., Ribic, B., Blecher, J.Zhang, W. 2019. Scientific, technological and economic issues in metal printing and their solutions, Nature materials, 18(10), p 1026-1032. DOI: 10.1038/s41563-019-0408-2
  • 26. Çelik, K.Özkan, A. 2017. Eklemeli imalat yöntemleri ile üretim ve onarım uygulamaları, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 5(1), p 107-121.
  • 27. Liu, R., Wang, Z., Sparks, T., Liou, F.Newkirk, J. 2017. Aerospace applications of laser additive manufacturing, in Laser additive manufacturing, Elsevier, p. 351-371. DOI: 10.1016/B978-0-08-100433-3.00013-0
  • 28. M., O'Brien, 2018. Existing standards as the framework to qualify additive manufacturing of metals, IEEE Aerospace Conferenceof Conference.: IEEE.
  • 29. George, C. 2017. Marshall Space Flight Center. Standard for Additively Manufactured Spaceflight Hardware by Laser Powder Bed Fusion in Metals. NASA Marshall Space Flight Center Huntsville, AL, USA.
  • 30. Kumar, L.J.Krishnadas Nair, C. 2017. Current trends of additive manufacturing in the aerospace industry, Advances in 3D printing & additive manufacturing technologies, 39-54. DOI: 10.1007/978-981-10-0812-2_4
  • 31. Jupiter Orbit Insertion 2016.—Press Kit, J.P.L.N.P., CA, USA.
  • 32. Kellner, T. 2017. An epiphany of disruption: GE additive chief explains how 3D printing will upend manufacturing, GE Reports, 13
  • 33. Najmon, J.C., Raeisi, S.Tovar, A. 2019. 2.1 Aerospace requirements and opportunities for additive manufacturing, Additive Manufacturing for the Aerospace Industry, 7. DOI: 10.1016/B978-0-12-814062-8.00002-9
  • 34. Xometry T., 2023. 6 Main Advantages of 3D Printing in the Aircraft Industry. https://www.xometry.com/resources/3d-printing/advantages-of-3d-printing-in-the-aircraft-industry/(Erişim tarihi 24.01.2024).
  • 35. Manufacturing, A., 2018. Siemens Uses Innovative Technology to Produce Gas Turbines., Press–Siemens Global Website. Munich.
  • 36. Horn, T.J.Harrysson, O.L. 2012. Overview of current additive manufacturing technologies and selected applications, Science progress, 95(3), p 255-282. DOI: 10.3184/003685012X13420984463047
  • 37. Morrow, W., Qi, H., Kim, I., Mazumder, J.Skerlos, S. 2007. Environmental aspects of laser-based and conventional tool and die manufacturing, Journal of Cleaner Production, 15(10), p 932-943. DOI: 10.1016/j.jclepro.2005.11.030
  • 38. Huang, S.H., Liu, P., Mokasdar, A.Hou, L. 2013. Additive manufacturing and its societal impact: a literature review, The International journal of advanced manufacturing technology, 67 1191-1203. DOI: 10.1007/s00170-012-4558-5
  • 39. Munsch, M., Wycisk, E., Kranz, J., Seyda, V.Claus, E. 2012. Functional products through laser additive manufacturing of TiAl6V4, in Workshop LAM Laser Additive Manufacturing.of Conference.
  • 40. Daisy C. 2013. Jet engine makers get lift from 3-D printing technology https://edition.cnn.com/travel/article/leap-engine-3-d-printing/index.html. (Erişim tarihi 30.01.2024).
  • 41. IEA World energy outlook 2022. Conference.: IEA Paris, France.
  • 42. Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., Cresko, J.Masanet, E. 2016. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components, Journal of cleaner production, 135 1559-1570. DOI: 10.1016/j.jclepro.2015.04.109
  • 43. 2023. Use of energy explained. https://www.eia.gov/outlooks/ieo/pdf/transportation. (Erişim tarihi 28.01.2024).
  • 44. Façanha, C., Blumberg, K.Miller, J. 2012. Global transportation energy and climate roadmap, International Council on Clean Transportation.
  • 45. Dornfeld, D. 2010. Green Manufacturing: Degrees of Perfection.
  • 46. Allwood, J.M., Ashby, M.F., Gutowski, T.G.Worrell, E. 2011. Material efficiency: A white paper, Resources, conservation and recycling, 55(3), p 362-381. DOI: 10.1016/j.resconrec.2010.11.002
  • 47. Kaufmann, M. 2008. Cost/weight optimization of aircraft structures (Doctoral dissertation, KTH).
  • 48. Cole, W. 2004. Boeing engineers and technologists are constantly developing better ways to design and make products, Boeing Frontiers.
  • 49. Herzog, D., Seyda, V., Wycisk, E.Emmelmann, C. 2016. Additive manufacturing of metals, Acta Materialia, 117 371-392. DOI: 10.1016/j.actamat.2016.07.019
  • 50. Little, M. 2010. Redefining What's Possible, Proceedings of the American Philosophical Society, 154(2), p 192-200.
  • 51. Tang, Y., Mak, K.Zhao, Y.F. 2016. A framework to reduce product environmental impact through design optimization for additive manufacturing, Journal of Cleaner Production, 137 1560-1572. DOI: 10.1016/j.jclepro.2016.06.037
  • 52. Gebler, M., Uiterkamp, A.J.S.Visser, C. 2014. A global sustainability perspective on 3D printing technologies, Energy policy, 74 158-167. DOI: 10.1016/j.enpol.2014.08.033
  • 53. Möller, M., Vykhtar, B., Emmelmann, C., Li, Z., Huang, J. 2019. Sustainable Production of Aircraft Systems: Carbon Footprint and Cost Potential of Additive Manufacturing in Aircraft Systems. In 8th international Workshop on Aircraft System Technology (AST), Hamburg.
  • 54. Hettesheimer, T., Hirzel, S.Roß, H.B. 2018. Energy savings through additive manufacturing: an analysis of selective laser sintering for automotive and aircraft components, Energy Efficiency, 11 1227-1245. DOI: /10.1007/s12053-018-9620-1
  • 55. Paris, H., Mokhtarian, H., Coatanéa, E., Museau, M.Ituarte, I.F. 2016. Comparative environmental impacts of additive and subtractive manufacturing technologies, CIRP Annals, 65(1), p 29-32. DOI: 10.1016/j.cirp.2016.04.036
  • 56. Peng, S., Li, T., Wang, X., Dong, M., Liu, Z., Shi, J.Zhang, H. 2017. Toward a sustainable impeller production: Environmental impact comparison of different impeller manufacturing methods, Journal of Industrial Ecology, 21(S1), p S216-S229. DOI: 10.1111/jiec.12628
  • 57. Wilson, J.M., Piya, C., Shin, Y.C., Zhao, F.Ramani, K. 2014. Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis, Journal of Cleaner Production, 80 170-178. DOI: 10.1016/j.jclepro.2014.05.084
  • 58. Liu, Z., Jiang, Q., Cong, W., Li, T.Zhang, H.-C. 2018. Comparative study for environmental performances of traditional manufacturing and directed energy deposition processes, International Journal of Environmental Science and Technology, 15 2273-2282. DOI: 10.1007/s13762-017-1622-6
  • 59. Walachowicz, F., Bernsdorf, I., Papenfuss, U., Zeller, C., Graichen, A., Navrotsky, V., Rajvanshi, N.Kiener, C. 2017. Comparative energy, resource and recycling lifecycle analysis of the industrial repair process of gas turbine burners using conventional machining and additive manufacturing, Journal of Industrial Ecology, 21(S1), p S203-S215. DOI: 10.1111/jiec.12637
  • 60. Chen, D., Heyer, S., Ibbotson, S., Salonitis, K., Steingrímsson, J.G.Thiede, S. 2015. Direct digital manufacturing: definition, evolution, and sustainability implications, Journal of Cleaner Production, 107 615-625. DOI: 10.1016/j.jclepro.2015.05.009
  • 61. Kellens, K., Yasa, E., Dewulf, W., Kruth, J.Duflou, J. (Year) Energy and resource efficiency of SLS/SLM processes. in 2011 International Solid Freeform Fabrication Symposium.of Conference.: University of Texas at Austin. DOI: 10.26153/tsw/15272
  • 62. Mami, F., Revéret, J.P., Fallaha, S.Margni, M. 2017. Evaluating eco‐efficiency of 3D printing in the aeronautic industry, Journal of Industrial Ecology, 21(S1), p S37-S48. DOI: 10.1111/jiec.12693
  • 63. Östlin, J., Sundin, E.Björkman, M. 2009. Product life-cycle implications for remanufacturing strategies, Journal of cleaner production, 17(11), p 999-1009. DOI: 10.1016/j.jclepro.2009.02.021
  • 64. Bi, G.Gasser, A. 2011. Restoration of nickel-base turbine blade knife-edges with controlled laser aided additive manufacturing, Physics Procedia, 12 402-409. DOI: 10.1016/j.phpro.2011.03.051
  • 65. Kaierle, S., Overmeyer, L., Alfred, I., Rottwinkel, B., Hermsdorf, J., Wesling, V.Weidlich, N. 2017. Single-crystal turbine blade tip repair by laser cladding and remelting, CIRP Journal of Manufacturing Science and Technology, 19 196-199. DOI: 10.1016/j.cirpj.2017.04.001
  • 66. Xue, L., Donovan, M., Li, Y., Chen, J., Wang, S.Campbell, G. (Year) Integrated rapid 3D mapping and laser additive repair of gas turbine engine components. in International Congress on Applications of Lasers & Electro-Optics.of Conference.: AIP Publishing. DOI: 10.2351/1.5062894
  • 67. Kelbassa, I., Gasser, A., Wissenbach, K. 2004. Laser cladding as a repair technique for BLISKs out of titanium and nickel base alloys used in aero engines. In Pacific International Conference on Applications of Lasers and Optics. Laser Institute of America.
  • 68. Richter, K. H., Orban, S., Nowotny, S. 2004. Laser cladding of the titanium alloy Ti6242 to restore damaged blades. In International Congress on Applications of Lasers & Electro-Optics. Laser Institute of America.
  • 69. Lin, C.-M., Chandra, A., Morales-Rivas, L., Huang, S.-Y., Wu, H.-C., Wu, Y.-E.Tsai, H.-L. 2014. Repair welding of ductile cast iron by laser cladding process: microstructure and mechanical properties, International journal of cast metals research, 27(6), p 378-383. DOI: 10.1179/1743133614Y.0000000126
  • 70. Technologies, S. 2020. 4 Benefits of Lightweighting. https://sybridge.com/lightweighting-benefits/.(Erişim tarihi 30.01.2024).
  • 71. Alami, A.H., Olabi, A.G., Alashkar, A., Alasad, S., Aljaghoub, H., Rezk, H.Abdelkareem, M.A. 2023. Additive manufacturing in the aerospace and automotive industries: Recent trends and role in achieving sustainable development goals, Ain Shams Engineering Journal, 14(11), p 102516. DOI: 10.1016/j.asej.2023.102516
  • 72. Zhang, H., Nagel, J.K., Al-Qas, A., Gibbons, E.Lee, J.J.-Y. 2018. Additive manufacturing with bioinspired sustainable product design: a conceptual model, Procedia Manufacturing, 26 880-891. DOI: 10.1016/j.promfg.2018.07.113
  • 73. Yusuf, S., Cutler, S.Gao, N., Review: The impact of metal additive manufacturing on the aerospace industry. Metals 9 (12): 1286. 2019. DOI: 10.3390/met9121286
  • 74. Campbell, T., Williams, C., Ivanova, O.Garrett, B. 2011. Could 3D printing change the world, Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council, Washington, DC, 3 1-16.
  • 75. Reeves, P. 2009. Additive Manufacturing–A supply chain wide response to economic uncertainty and environmental sustainability, Econolyst Limited, The Silversmiths, Crown Yard, Wirksworth, Derbyshire, DE4 4ET, UK.
  • 76. Kate, D. 2015. Can We 3D Print our Way to Sustainability?. http://www.earthisland.org, (Erişim tarihi 30.01.2024).
  • 77. Yoon, H.-S., Lee, J.-Y., Kim, H.-S., Kim, M.-S., Kim, E.-S., Shin, Y.-J., Chu, W.-S.Ahn, S.-H. 2014. A comparison of energy consumption in bulk forming, subtractive, and additive processes: Review and case study, International Journal of Precision Engineering and Manufacturing-Green Technology, 1 261-279. DOI: 10.1007/s40684-014-0033-0
  • 78. Umeda, S., Nakano, M., Mizuyama, H., Hibino, N., Kiritsis, D., Von Cieminski, G. 2015. Advances in Production Management Systems: Innovative Production Management Towards Sustainable Growth: IFIP WG 5.7 International Conference, APMS 2015, Proceedings, Part I Tokyo, Japan, 459.
  • 79. Girdwood, R., Bezuidenhout, M., Hugo, P., Conradie, P., Oosthuizen, G.Dimitrov, D. 2017. Investigating components affecting the resource efficiency of incorporating metal additive manufacturing in process chains, Procedia Manufacturing, 8 52-58. DOI: 10.1016/j.promfg.2017.02.006
  • 80. Kianian, B. 2017. Wohlers report 2017: 3d printing and additive manufacturing state of the industry, annual worldwide progress report: Chapters titles: The middle east, and other countries.
  • 81. Wohler, T. 2016. Executive summary of the Wohlers Report 2016, Wohlers Associates, Fort Collins, Colorado.
  • 82. Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B.P.Pennington, D.W. 2004. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications, Environment international, 30(5), p 701-720. DOI: 10.1016/j.envint.2003.11.005
  • 83. Villamil, C., Nylander, J., Hallstedt, S. I., Schulte, J., Watz, M. 2018. Additive manufacturing from a strategic sustainability perspective. In DS 92: Proceedings of the DESIGN 2018 15th International Design Conference (pp. 1381-1392).
  • 84. Wohlers, T. 2013. State of additive manufacturing, US Manufacturing Competitiveness Initiative Dialogue, 16.
  • 85. Frazier, W.E. 2014. Metal additive manufacturing: a review, Journal of Materials Engineering and performance, 23 1917-1928. DOI: 10.1007/s11665-014-0958-z
  • 86. Gausemeier, J., Echterhoff, N.Wall, M. 2013. Thinking ahead the Future of Additive Manufacturing–Innovation Roadmapping of Required Advancements, University of Paderborn.
  • 87. Joint EASA-FAA Additive Manufacturing Workshop 2023 https://www.easa.europa.eu/en/newsroom-and-events/events/joint-easa-faa-additive-manufacturing-workshop-2023. (Erişim tarihi 30.01.2024).
  • 88. Jones, C. P., Robertson, E. H., Koelbl, M. B., Singer, C. 2016. Additive manufacturing a liquid hydrogen rocket engine (No. M16-5225).
  • 89. Waller, J. M. 2018. Nondestructive testing of additive manufactured metal parts used in aerospace applications (No. JSC-E-DAA-TN49270).
Toplam 88 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevresel Olarak Sürdürülebilir Mühendislik, Malzeme Tasarım ve Davranışları, İmalat Süreçleri ve Teknolojileri, Havacılık Malzemeleri
Bölüm Tasarım ve Teknoloji
Yazarlar

Nedim Sunay 0000-0002-2957-1144

Enis Turhan Turgut 0000-0002-9601-2318

Erken Görünüm Tarihi 24 Mayıs 2024
Yayımlanma Tarihi 29 Haziran 2024
Gönderilme Tarihi 15 Şubat 2024
Kabul Tarihi 24 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 2

Kaynak Göster

APA Sunay, N., & Turgut, E. T. (2024). Eklemeli İmalat Teknolojilerinin Havacılık Sektöründe Enerji Verimliliğini Artırma ve Emisyon Azaltma Potansiyeli. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(2), 548-566. https://doi.org/10.29109/gujsc.1437824

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526