Araştırma Makalesi
BibTex RIS Kaynak Göster

A Decision Support System for Detection of Trading Behavior in Energy Markets

Yıl 2024, Cilt: 12 Sayı: 2, 625 - 643, 29.06.2024
https://doi.org/10.29109/gujsc.1470266

Öz

The increasing complexity and regulatory needs in energy markets necessitate the development of innovative tools for monitoring and evaluating trading activities. This study introduces a decision support system (DSS) that accurately detects commercial behaviors of market participants using artificial intelligence techniques and big data analytics. The mentioned DSS allows for trading behavior scoring with LGBM based on the plant and/or plant type that market participants want to track, enabling them to make data-driven bids by detecting the main players’ trading behaviors in the market.

Destekleyen Kurum

TUBİTAK

Proje Numarası

3220630

Teşekkür

This study was supported with the project number 3220630 under the program of "TÜBİTAK TEYDEB 1501 - Industry R&D Projects".

Kaynakça

  • [1] Borenstein, S., Bushnell, J. B., & Wolak, F. A. (2002). Measuring market inefficiencies in California’s restructured wholesale electricity market. American Economic Review, 92(5), 1376–1405.
  • [2] Li, B., Wang, X., Shahidehpour, M., Jiang, C., & Li, Z. (2019). DER aggregator’s data-driven bidding strategy using the information gap decision theory in a non-cooperative electricity market. IEEE Transactions on Smart Grid, 10(6), 6756–6767.
  • [3] Xu, X., Yan, Z., Shahidehpour, M., Li, Z., Yan, M., & Kong, X. (2020). Data-driven risk-averse two-stage optimal stochastic scheduling of energy and reserve with correlated wind power. IEEE Transactions on Sustainable Energy, 11(1), 436–447.
  • [4] Dehghanpour, K., Nehrir, M. H., Sheppard, J. W., & Kelly, N. C. (2016). Agent-based modeling in electrical energy markets using dynamic Bayesian networks. IEEE Transactions on Power Systems, 31(6), 4744–4754. https://doi.org/10.1109/TPWRS.2016.2524678
  • [5] Guo, H., Chen, Q., Xia, Q., & Kang, C. (2021). Deep inverse reinforcement learning for objective function identification in bidding models. IEEE Transactions on Power Systems, 36(6), 5684–5696.
  • [6] Guo, H., Chen, Q., Fang, X., Liu, K., Xia, Q., & Kang, C. (2019). Market power mitigation clearing mechanism based on constrained bidding capacities. IEEE Transactions on Power Systems, 34(6), 4817–4827. https://doi.org/10.1109/TPWRS.2019.2913334
  • [7] Zou, P., Chen, Q., Yu, Y., Xia, Q., & Kang, C. (2017). Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 high renewable energy penetration roadmap. Applied Energy, 185, 56–67.https://doi.org/10.1016/j.apenergy.2016.10.061
  • [8] Ruiz, C., Conejo, A. J., & Smeers, Y. (2012). Equilibria in an oligopolistic electricity pool with stepwise offer curves. IEEE Transactions on Power Systems, 27(2), 752–761. https://doi.org/10.1109/TPWRS.2011.2170439
  • [9] Li, T., & Shahidehpour, M. (2005). Strategic bidding of transmission constrained GENCOs with incomplete information. IEEE Transactions on Power Systems, 20(1), 437–447.
  • [10] Baringo, L., & Conejo, A. J. (2016). Offering strategy of wind power producer: A multi-stage risk-constrained approach. IEEE Transactions on Power Systems, 31(2), 1420–1429. https://doi.org/10.1109/TPWRS.2015.2411332
  • [11] Yazdani-Damavandi, M., Neyestani, N., Shafie-khah, M., Contreras, J., & Catalao, J. P. S. (2018). Strategic behavior of multi-energy players in electricity markets as aggregators of demand side resources using a bilevel approach. IEEE Transactions on Power Systems, 33(1), 397–411. https://doi.org/10.1109/TPWRS.2017.2688344.
  • [12] Guo, H., Chen, Q., Xia, Q., & Kang, C. (2019). Efficiency loss for variable renewable energy incurred by competition in electricity markets. IEEE Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2019.2946930
  • [13] Doraszelski, U., Lewis, G., & Pakes, A. (2018). Just starting out: Learning and equilibrium in a new market. American Economic Review, 108(3), 565–615.
  • [14] Hortaçsu A. and Puller, S. L. (2008). Understanding strategic bidding in multi- unit auctions: A case study of the Texas electricity spot market,” RAND J. Econ., vol. 39, no. 1, pp. 86–114.
  • [15] Kohansal, M., Sadeghi-Mobarakeh, A., & Mohsenian-Rad, H. (2017). A data-driven analysis of supply bids in California ISO market: Price elasticity and impact of renewables. In Proc. IEEE International Conference on Smart Grid Communications (SmartGridComm) (pp. 58–63).
  • [16] Kohansal, M., & Mohsenian-Rad, H. (2016). A closer look at demand bids in California ISO energy market. IEEE Transactions on Power Systems, 31(4), 3330–3331. https://doi.org/10.1109/TPWRS.2015.2484062
  • [17] Wang, L., Zhang, Z., & Chen, J. (2017). Short-term electricity price forecasting with stacked denoising autoencoders. IEEE Transactions on Power Systems, 32(4), 2673–2681. https://doi.org/10.1109/TPWRS.2016.2628873
  • [18] Wang, Y., Gan, D., Sun, M., Zhang, N., Lu, Z., & Kang, C. (2019). Probabilistic individual load forecasting using pinball loss guided LSTM. Applied Energy, 235, 10–20.
  • [19] Teeraratkul, T., O’Neill, D., & Lall, S. (2018). Shape-based approach to household electric load curve clustering and prediction. IEEE Transactions on Smart Grid, 9(5), 5196–5206.
  • [20] Velloso, A., Street, A., Pozo, D., Arroyo, J. M., & Cobos, N. G. (2019). Two stage robust unit commitment for co-optimized electricity markets: An adaptive data-driven approach for scenario-based uncertainty sets. IEEE Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2019.2915049
  • [21] Kwac, J., Flora, J., & Rajagopal, R. (2014). Household energy consumption segmentation using hourly data. IEEE Transactions on Smart Grid, 5(1), 420–430.
  • [22] Liang, H., Ma, J., Sun, R., & Du, Y. (2019). A data-driven approach for targeting residential customers for energy efficiency programs. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2019.2933704
  • [23] Zheng, K., Chen, Q., Wang, Y., Kang, C., & Xia, Q. (2019). A novel combined data-driven approach for electricity theft detection. IEEE Transactions on Industrial Informatics, 15(3), 1809–1819. https://doi.org/10.1109/TII.2018.2873814
  • [24] Sun, W., Zamani, M., Hesamzadeh, M. R., & Zhang, H.-T. (2019). Data-driven probabilistic optimal power flow with nonparametric Bayesian modeling and inference. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2019.2931160
  • [25] Wang, Y., Wan, C., Zhou, Z., Zhang, K., & Botterud, A. (2018). Improving deployment availability of energy storage with data-driven AGC signal models. IEEE Transactions on Power Systems, 33(4), 4207–4217. https://doi.org/10.1109/TPWRS.2017.2780223
  • [26] Bagheri, Wang, J., & Zhao, C. (2017). Data-driven stochastic transmission expansion planning. IEEE Transactions on Power Systems, 32(5),3461–3470. https://doi.org/10.1109/TPWRS.2016.2635098
  • [27] Ruiz, A. J., Conejo, A. J., & Bertsimas, D. J. (2013). Revealing rival marginal offer prices via inverse optimization. IEEE Transactions on Power Systems, 28(3), 3056–3064. https://doi.org/10.1109/TPWRS.2012.2234144
  • [28] Saez-Gallego, J., Morales, J. M., Zugno, M., & Madsen, H. (2016). A data-driven bidding model for a cluster of price-responsive consumers of electricity. IEEE Transactions on Power Systems, 31(6), 5001–5011.
  • [29] Lu, T., Wang, Z., Wang, J., Ai, Q., & Wang, C. (2019). A data-driven Stackelberg market strategy for demand response-enabled distribution systems. IEEE Transactions on Smart Grid, 10(3), 2345–2357. https://doi.org/10.1109/TSG.2018.2795007
  • [30] Chen, R., Paschalidis, I. C., Caramanis, M. C., & Andrianesis, P. (2019). Learning from past bids to participate strategically in day-ahead electricity markets. IEEE Transactions on Smart Grid, 10(5), 5794–5806.
  • [31] Mitridati, L., & Pinson, P. (2018). A Bayesian inference approach to unveil supply curves in electricity markets. IEEE Transactions on Power Systems, 33(3), 2610–2620. https://doi.org/10.1109/TPWRS.2017.2757980
  • [32] Sun, M., Wang, Y., Teng, F., Ye, Y., Strbac, G., & Kang, C. (2019). Clustering based residential baseline estimation: A probabilistic perspective. IEEE Transactions on Smart Grid, 10(6), 6014–6028. https://doi.org/10.1109/TSG.2019.2895333
  • [33] Hu, J., & Li, H. (2019). A new clustering approach for scenario reduction in multi-stochastic variable programming. IEEE Transactions on Power Systems, 34(5), 3813–3825. https://doi.org/10.1109/TPWRS.2019.2901545
  • [34] Shahmohammadi, Sioshansi, R., Conejo, A. J., & Afsharnia, S. (2018). The role of energy storage in mitigating ramping inefficiencies caused by variable renewable generation. Energy Conversion and Management, 162, 307–320. https://doi.org/10.1016/j.enconman.2017.12.054
  • [35] Xu, Y., Shi, Y., Kirschen, D. S., & Zhang, B. (2018). Optimal battery participation in frequency regulation markets. IEEE Transactions on Power Systems, 33(6), 6715–6725. https://doi.org/10.1109/TPWRS.2018.2846774
  • [36] He, G., Chen, Q., Moutis, P., Kar, S., & Whitacre, J. F. (2018). An intertemporal decision framework for electrochemical energy storage management. Nature Energy, 3(5), 404–412. https://doi.org/10.1038/s41560-018-0129-9
  • [37] Khajeh, H., & Foroud, A. A. (2017). Behavioural market power indices in a transmission-constrained electricity market. IET Generation, Transmission & Distribution, 11(18), 4608–4616. https://doi.org/10.1049/iet-gtd.2017.0911

Enerji Piyasalarında Ticari Davranış Tespiti İçin bir Karar Destek Sistemi

Yıl 2024, Cilt: 12 Sayı: 2, 625 - 643, 29.06.2024
https://doi.org/10.29109/gujsc.1470266

Öz

Enerji piyasalarında artan karmaşıklık ve düzenleme ihtiyacı, ticari faaliyetlerin izlenmesi ve değerlendirilmesi için yenilikçi araçların geliştirilmesini zorunlu kılmaktadır. Bu çalışma, piyasa katılımcılarının davranışlarını yapay öğrenme tekniklerini ve büyük veri analitiğini kullanarak ticari davranışları yüksek bir doğrulukla tespiti yapan bir karar destek sistemini (KDS) ortaya koymaktadır. Söz konusu KDS, piyasa katılımcılarının takip etmek istedikleri santral ve/veya santral tipine göre LGBM ile ticari davranış skorlaması yaparak piyasadaki ana oyuncuların ticari davranış tespit edebilmekte ve bu sayede piyasa katılımcılarının veriye dayalı teklif verebilmelerini sağlamaktadır.

Proje Numarası

3220630

Kaynakça

  • [1] Borenstein, S., Bushnell, J. B., & Wolak, F. A. (2002). Measuring market inefficiencies in California’s restructured wholesale electricity market. American Economic Review, 92(5), 1376–1405.
  • [2] Li, B., Wang, X., Shahidehpour, M., Jiang, C., & Li, Z. (2019). DER aggregator’s data-driven bidding strategy using the information gap decision theory in a non-cooperative electricity market. IEEE Transactions on Smart Grid, 10(6), 6756–6767.
  • [3] Xu, X., Yan, Z., Shahidehpour, M., Li, Z., Yan, M., & Kong, X. (2020). Data-driven risk-averse two-stage optimal stochastic scheduling of energy and reserve with correlated wind power. IEEE Transactions on Sustainable Energy, 11(1), 436–447.
  • [4] Dehghanpour, K., Nehrir, M. H., Sheppard, J. W., & Kelly, N. C. (2016). Agent-based modeling in electrical energy markets using dynamic Bayesian networks. IEEE Transactions on Power Systems, 31(6), 4744–4754. https://doi.org/10.1109/TPWRS.2016.2524678
  • [5] Guo, H., Chen, Q., Xia, Q., & Kang, C. (2021). Deep inverse reinforcement learning for objective function identification in bidding models. IEEE Transactions on Power Systems, 36(6), 5684–5696.
  • [6] Guo, H., Chen, Q., Fang, X., Liu, K., Xia, Q., & Kang, C. (2019). Market power mitigation clearing mechanism based on constrained bidding capacities. IEEE Transactions on Power Systems, 34(6), 4817–4827. https://doi.org/10.1109/TPWRS.2019.2913334
  • [7] Zou, P., Chen, Q., Yu, Y., Xia, Q., & Kang, C. (2017). Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 high renewable energy penetration roadmap. Applied Energy, 185, 56–67.https://doi.org/10.1016/j.apenergy.2016.10.061
  • [8] Ruiz, C., Conejo, A. J., & Smeers, Y. (2012). Equilibria in an oligopolistic electricity pool with stepwise offer curves. IEEE Transactions on Power Systems, 27(2), 752–761. https://doi.org/10.1109/TPWRS.2011.2170439
  • [9] Li, T., & Shahidehpour, M. (2005). Strategic bidding of transmission constrained GENCOs with incomplete information. IEEE Transactions on Power Systems, 20(1), 437–447.
  • [10] Baringo, L., & Conejo, A. J. (2016). Offering strategy of wind power producer: A multi-stage risk-constrained approach. IEEE Transactions on Power Systems, 31(2), 1420–1429. https://doi.org/10.1109/TPWRS.2015.2411332
  • [11] Yazdani-Damavandi, M., Neyestani, N., Shafie-khah, M., Contreras, J., & Catalao, J. P. S. (2018). Strategic behavior of multi-energy players in electricity markets as aggregators of demand side resources using a bilevel approach. IEEE Transactions on Power Systems, 33(1), 397–411. https://doi.org/10.1109/TPWRS.2017.2688344.
  • [12] Guo, H., Chen, Q., Xia, Q., & Kang, C. (2019). Efficiency loss for variable renewable energy incurred by competition in electricity markets. IEEE Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2019.2946930
  • [13] Doraszelski, U., Lewis, G., & Pakes, A. (2018). Just starting out: Learning and equilibrium in a new market. American Economic Review, 108(3), 565–615.
  • [14] Hortaçsu A. and Puller, S. L. (2008). Understanding strategic bidding in multi- unit auctions: A case study of the Texas electricity spot market,” RAND J. Econ., vol. 39, no. 1, pp. 86–114.
  • [15] Kohansal, M., Sadeghi-Mobarakeh, A., & Mohsenian-Rad, H. (2017). A data-driven analysis of supply bids in California ISO market: Price elasticity and impact of renewables. In Proc. IEEE International Conference on Smart Grid Communications (SmartGridComm) (pp. 58–63).
  • [16] Kohansal, M., & Mohsenian-Rad, H. (2016). A closer look at demand bids in California ISO energy market. IEEE Transactions on Power Systems, 31(4), 3330–3331. https://doi.org/10.1109/TPWRS.2015.2484062
  • [17] Wang, L., Zhang, Z., & Chen, J. (2017). Short-term electricity price forecasting with stacked denoising autoencoders. IEEE Transactions on Power Systems, 32(4), 2673–2681. https://doi.org/10.1109/TPWRS.2016.2628873
  • [18] Wang, Y., Gan, D., Sun, M., Zhang, N., Lu, Z., & Kang, C. (2019). Probabilistic individual load forecasting using pinball loss guided LSTM. Applied Energy, 235, 10–20.
  • [19] Teeraratkul, T., O’Neill, D., & Lall, S. (2018). Shape-based approach to household electric load curve clustering and prediction. IEEE Transactions on Smart Grid, 9(5), 5196–5206.
  • [20] Velloso, A., Street, A., Pozo, D., Arroyo, J. M., & Cobos, N. G. (2019). Two stage robust unit commitment for co-optimized electricity markets: An adaptive data-driven approach for scenario-based uncertainty sets. IEEE Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2019.2915049
  • [21] Kwac, J., Flora, J., & Rajagopal, R. (2014). Household energy consumption segmentation using hourly data. IEEE Transactions on Smart Grid, 5(1), 420–430.
  • [22] Liang, H., Ma, J., Sun, R., & Du, Y. (2019). A data-driven approach for targeting residential customers for energy efficiency programs. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2019.2933704
  • [23] Zheng, K., Chen, Q., Wang, Y., Kang, C., & Xia, Q. (2019). A novel combined data-driven approach for electricity theft detection. IEEE Transactions on Industrial Informatics, 15(3), 1809–1819. https://doi.org/10.1109/TII.2018.2873814
  • [24] Sun, W., Zamani, M., Hesamzadeh, M. R., & Zhang, H.-T. (2019). Data-driven probabilistic optimal power flow with nonparametric Bayesian modeling and inference. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2019.2931160
  • [25] Wang, Y., Wan, C., Zhou, Z., Zhang, K., & Botterud, A. (2018). Improving deployment availability of energy storage with data-driven AGC signal models. IEEE Transactions on Power Systems, 33(4), 4207–4217. https://doi.org/10.1109/TPWRS.2017.2780223
  • [26] Bagheri, Wang, J., & Zhao, C. (2017). Data-driven stochastic transmission expansion planning. IEEE Transactions on Power Systems, 32(5),3461–3470. https://doi.org/10.1109/TPWRS.2016.2635098
  • [27] Ruiz, A. J., Conejo, A. J., & Bertsimas, D. J. (2013). Revealing rival marginal offer prices via inverse optimization. IEEE Transactions on Power Systems, 28(3), 3056–3064. https://doi.org/10.1109/TPWRS.2012.2234144
  • [28] Saez-Gallego, J., Morales, J. M., Zugno, M., & Madsen, H. (2016). A data-driven bidding model for a cluster of price-responsive consumers of electricity. IEEE Transactions on Power Systems, 31(6), 5001–5011.
  • [29] Lu, T., Wang, Z., Wang, J., Ai, Q., & Wang, C. (2019). A data-driven Stackelberg market strategy for demand response-enabled distribution systems. IEEE Transactions on Smart Grid, 10(3), 2345–2357. https://doi.org/10.1109/TSG.2018.2795007
  • [30] Chen, R., Paschalidis, I. C., Caramanis, M. C., & Andrianesis, P. (2019). Learning from past bids to participate strategically in day-ahead electricity markets. IEEE Transactions on Smart Grid, 10(5), 5794–5806.
  • [31] Mitridati, L., & Pinson, P. (2018). A Bayesian inference approach to unveil supply curves in electricity markets. IEEE Transactions on Power Systems, 33(3), 2610–2620. https://doi.org/10.1109/TPWRS.2017.2757980
  • [32] Sun, M., Wang, Y., Teng, F., Ye, Y., Strbac, G., & Kang, C. (2019). Clustering based residential baseline estimation: A probabilistic perspective. IEEE Transactions on Smart Grid, 10(6), 6014–6028. https://doi.org/10.1109/TSG.2019.2895333
  • [33] Hu, J., & Li, H. (2019). A new clustering approach for scenario reduction in multi-stochastic variable programming. IEEE Transactions on Power Systems, 34(5), 3813–3825. https://doi.org/10.1109/TPWRS.2019.2901545
  • [34] Shahmohammadi, Sioshansi, R., Conejo, A. J., & Afsharnia, S. (2018). The role of energy storage in mitigating ramping inefficiencies caused by variable renewable generation. Energy Conversion and Management, 162, 307–320. https://doi.org/10.1016/j.enconman.2017.12.054
  • [35] Xu, Y., Shi, Y., Kirschen, D. S., & Zhang, B. (2018). Optimal battery participation in frequency regulation markets. IEEE Transactions on Power Systems, 33(6), 6715–6725. https://doi.org/10.1109/TPWRS.2018.2846774
  • [36] He, G., Chen, Q., Moutis, P., Kar, S., & Whitacre, J. F. (2018). An intertemporal decision framework for electrochemical energy storage management. Nature Energy, 3(5), 404–412. https://doi.org/10.1038/s41560-018-0129-9
  • [37] Khajeh, H., & Foroud, A. A. (2017). Behavioural market power indices in a transmission-constrained electricity market. IET Generation, Transmission & Distribution, 11(18), 4608–4616. https://doi.org/10.1049/iet-gtd.2017.0911
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Karar Desteği ve Grup Destek Sistemleri, Enerji
Bölüm Tasarım ve Teknoloji
Yazarlar

Ezgi Avcı 0000-0002-9826-1027

Proje Numarası 3220630
Erken Görünüm Tarihi 10 Haziran 2024
Yayımlanma Tarihi 29 Haziran 2024
Gönderilme Tarihi 18 Nisan 2024
Kabul Tarihi 2 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 2

Kaynak Göster

APA Avcı, E. (2024). Enerji Piyasalarında Ticari Davranış Tespiti İçin bir Karar Destek Sistemi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(2), 625-643. https://doi.org/10.29109/gujsc.1470266

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526