Araştırma Makalesi
BibTex RIS Kaynak Göster

Özgün Bir Latis Yapı Tasarımının Auxetic Davranışının İncelenmesi

Yıl 2024, Cilt: 12 Sayı: 2, 771 - 781, 29.06.2024
https://doi.org/10.29109/gujsc.1486707

Öz

Auxetic yapılar, yapıyı oluşturan geometrik şekillerinden dolayı negatif poison oranına sahip özel yapılardır. Bu yapılara çekme kuvveti uygulandığında enine ve boyuna genişlemeler izlenirken, basma kuvveti uygulandığında ise enine ve boyuna daralmalar gözlenmektedir. Auxetic yapılarda kiral, ok ucu, re-entrant gibi birçok farklı birim hücre tasarımları mevcuttur. Bu çalışmada da Stravaski adı verilen özgün bir hücre tasarımının auxeticlik özelliği araştırılmıştır. Farklı geometrik iç kalınlık ölçüleri verilerek tasarlanan latis yapının sonlu elemanlar analizleri gerçekleştirilmiş ve negatif poison oranına sahip olduğu bulunmuştur. 224*224 mm, 160*160 mm ve 120*120 mm’lik ölçüde tasarlanan Stravaski latis hücre yapılarının 1 mm geometrik iç kalınlıklarında en iyi auxetic özellik tespit edilmiştir. Ayrıca kendi içlerindede en küçük ölçüye sahip olan 120*120 mm’lik Stravaski latis yapısının diğer çalışılan yapılara göre en yüksek auxetic özellik gösterdiği bulunmuştur.

Kaynakça

  • [1] X. Yu, J. Zhou, H. Liang, Z. Jiang, L. Wu, Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Prog Mater Sci. 94 (2018) 114–173. https://doi.org/10.1016/j.pmatsci.2017.12.003.
  • [2] [2] M. Xu, Z. Xu, Z. Zhang, H. Lei, Y. Bai, D. Fang, Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies, Int J Mech Sci. 159 (2019) 43–57. https://doi.org/10.1016/j.ijmecsci.2019.05.044.
  • [3] [3] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog Mater Sci. 46 (2001) 559–632. https://doi.org/10.1016/S0079-6425(00)00002-5.
  • [4] [4] K.E. Evans, A. Alderson, Auxetic Materials: Functional Materials and Structures from Lateral Thinking!, Advanced Materials. 12 (2000) 617–628. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3.
  • [5] [5] C. Huang, L. Chen, Negative Poisson’s Ratio in Modern Functional Materials, Advanced Materials. 28 (2016) 8079–8096. https://doi.org/10.1002/adma.201601363.
  • [6] [6] A. Alderson, K.L. Alderson, Auxetic materials, Proc Inst Mech Eng G J Aerosp Eng. 221 (2007) 565–575. https://doi.org/10.1243/09544100JAERO185.
  • [7] R. Gatt, L. Mizzi, J.I. Azzopardi, K.M. Azzopardi, D. Attard, A. Casha, J. Briffa, J.N. Grima, Hierarchical Auxetic Mechanical Metamaterials, Sci Rep. 5 (2015) 8395. https://doi.org/10.1038/srep08395.
  • [8] C. Qi, F. Jiang, A. Remennikov, L.-Z. Pei, J. Liu, J.-S. Wang, X.-W. Liao, S. Yang, Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs, Compos B Eng. 197 (2020) 108117. https://doi.org/10.1016/j.compositesb.2020.108117.
  • [9] L. Yang, O. Harrysson, H. West, D. Cormier, Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing, Int J Solids Struct. 69–70 (2015) 475–490. https://doi.org/10.1016/j.ijsolstr.2015.05.005.
  • [10] C. Qi, F. Jiang, S. Yang, A. Remennikov, Multi-scale characterization of novel re-entrant circular auxetic honeycombs under quasi-static crushing, Thin-Walled Structures. 169 (2021) 108314. https://doi.org/10.1016/j.tws.2021.108314.
  • [11] M.-H. Fu, Y. Chen, L.-L. Hu, Bilinear elastic characteristic of enhanced auxetic honeycombs, Compos Struct. 175 (2017) 101–110. https://doi.org/10.1016/j.compstruct.2017.04.007.
  • [12] K.P. Logakannan, V. Ramachandran, J. Rengaswamy, Z. Gao, D. Ruan, Quasi-static and dynamic compression behaviors of a novel auxetic structure, Compos Struct. 254 (2020) 112853. https://doi.org/10.1016/j.compstruct.2020.112853.
  • [13] M. Xu, D. Liu, P. Wang, Z. Zhang, H. Jia, H. Lei, D. Fang, In-plane compression behavior of hybrid honeycomb metastructures: Theoretical and experimental studies, Aerosp Sci Technol. 106 (2020) 106081. https://doi.org/10.1016/j.ast.2020.106081.
  • [14] H.L. Tan, Z.C. He, K.X. Li, E. Li, A.G. Cheng, B. Xu, In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio, Compos Struct. 229 (2019) 111415. https://doi.org/10.1016/j.compstruct.2019.111415.
  • [15] Y. Chen, T. Li, Z. Jia, F. Scarpa, C.-W. Yao, L. Wang, 3D printed hierarchical honeycombs with shape integrity under large compressive deformations, Mater Des. 137 (2018) 226–234. https://doi.org/10.1016/j.matdes.2017.10.028.
  • [16] [16] Y. Sun, N. Pugno, Hierarchical Fibers with a Negative Poisson’s Ratio for Tougher Composites, Materials. 6 (2013) 699–712. https://doi.org/10.3390/ma6020699.
  • [17] [17] X. Zhang, R. Tian, Z. Zhang, G. Li, W. Feng, In-plane elasticity of a novel vertical strut combined re-entrant honeycomb structure with negative Poisson’s ratio, Thin-Walled Structures. 163 (2021) 107634. https://doi.org/10.1016/j.tws.2021.107634.
  • [18] [18] S.Z. Khan, F. Mustahsan, E.R.I. Mahmoud, S.H. Masood, A novel modified re-entrant honeycomb structure to enhance the auxetic behavior: Analytical and numerical study by FEA, Mater Today Proc. 39 (2021) 1041–1045. https://doi.org/10.1016/j.matpr.2020.05.083.
  • [19] [19] YL Tezi: Numerical and experimental investigation of the impact performance of 3d lattices with negative poisson's ratio / Negatif poisson oranlı 3 boyutlu latislerin çarpma dayanıklılığın deneysel ve sayısal İncelenmesi Yazar:Altuğ Ataalp Danışman: Prof. Dr. Halit Süleyman Türkmen
  • [20] [20] F.Usta, Ökzetik Dolgulu Çarpışma Tüplerinin Dinamik Çarpma Yükleri Altında Deneysel Ve Sayısal Olarak İncelenmesi. Conference: 8. Ulusal Havacılık Ve Uzay Konferansı (UHUK-2020) At: Türk Hava Kurumu Üniversitesi, Ankara
  • [21] [21] Jay Bonner, Islamic geometric patterns, New York, USA, 1999.
  • [22] [22] M. Lei, W. Hong, Z. Zhao, C. Hamel, M. Chen, H. Lu, H.J. Qi, 3D Printing of Auxetic Metamaterials with Digitally Reprogrammable Shape, ACS Appl Mater Interfaces. 11 (2019) 22768–22776. https://doi.org/10.1021/acsami.9b06081.
  • [23] [23] H. Ateş, N. Kaya, Mechanical and Microstructural Properties of Friction Welded AISI 304 Stainless Steel to AISI 1060 Steel AISI 1060,
  • [24] [24] J. Zhang, G. Lu, Z. Wang, D. Ruan, A. Alomarah, Y. Durandet, Large deformation of an auxetic structure in tension: Experiments and finite element analysis, Compos Struct. 184 (2018) 92–101. https://doi.org/10.1016/j.compstruct.2017.09.076.
  • [25] [25 ]K. Meena, S. Singamneni, Investigation of a Novel Chiral S‐Shaped Auxetic Structure under Large Tensile Deformation, Physica Status Solidi (b) 257 (2020). https://doi.org/10.1002/pssb.202000239.

Özgün Bir Latis Yapı Tasarımının Auxetic Davranışının İncelenmesi

Yıl 2024, Cilt: 12 Sayı: 2, 771 - 781, 29.06.2024
https://doi.org/10.29109/gujsc.1486707

Öz

Auxetic yapılar, yapıyı oluşturan geometrik şekillerinden dolayı negatif poison oranına sahip özel yapılardır. Bu yapılara çekme kuvveti uygulandığında enine ve boyuna genişlemeler izlenirken, basma kuvveti uygulandığında ise enine ve boyuna daralmalar gözlenmektedir. Auxetic yapılarda kiral, ok ucu, re-entrant gibi birçok farklı birim hücre tasarımları mevcuttur. Bu çalışmada da Stravaski adı verilen özgün bir hücre tasarımının auxeticlik özelliği araştırılmıştır. Farklı geometrik iç kalınlık ölçüleri verilerek tasarlanan latis yapının sonlu elemanlar analizleri gerçekleştirilmiş ve negatif poison oranına sahip olduğu bulunmuştur. 224*224 mm, 160*160 mm ve 120*120 mm’lik ölçüde tasarlanan Stravaski latis hücre yapılarının 1 mm geometrik iç kalınlıklarında en iyi auxetic özellik tespit edilmiştir. Ayrıca kendi içlerindede en küçük ölçüye sahip olan 120*120 mm’lik Stravaski latis yapısının diğer çalışılan yapılara göre en yüksek auxetic özellik gösterdiği bulunmuştur.

Kaynakça

  • [1] X. Yu, J. Zhou, H. Liang, Z. Jiang, L. Wu, Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Prog Mater Sci. 94 (2018) 114–173. https://doi.org/10.1016/j.pmatsci.2017.12.003.
  • [2] [2] M. Xu, Z. Xu, Z. Zhang, H. Lei, Y. Bai, D. Fang, Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies, Int J Mech Sci. 159 (2019) 43–57. https://doi.org/10.1016/j.ijmecsci.2019.05.044.
  • [3] [3] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog Mater Sci. 46 (2001) 559–632. https://doi.org/10.1016/S0079-6425(00)00002-5.
  • [4] [4] K.E. Evans, A. Alderson, Auxetic Materials: Functional Materials and Structures from Lateral Thinking!, Advanced Materials. 12 (2000) 617–628. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3.
  • [5] [5] C. Huang, L. Chen, Negative Poisson’s Ratio in Modern Functional Materials, Advanced Materials. 28 (2016) 8079–8096. https://doi.org/10.1002/adma.201601363.
  • [6] [6] A. Alderson, K.L. Alderson, Auxetic materials, Proc Inst Mech Eng G J Aerosp Eng. 221 (2007) 565–575. https://doi.org/10.1243/09544100JAERO185.
  • [7] R. Gatt, L. Mizzi, J.I. Azzopardi, K.M. Azzopardi, D. Attard, A. Casha, J. Briffa, J.N. Grima, Hierarchical Auxetic Mechanical Metamaterials, Sci Rep. 5 (2015) 8395. https://doi.org/10.1038/srep08395.
  • [8] C. Qi, F. Jiang, A. Remennikov, L.-Z. Pei, J. Liu, J.-S. Wang, X.-W. Liao, S. Yang, Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs, Compos B Eng. 197 (2020) 108117. https://doi.org/10.1016/j.compositesb.2020.108117.
  • [9] L. Yang, O. Harrysson, H. West, D. Cormier, Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing, Int J Solids Struct. 69–70 (2015) 475–490. https://doi.org/10.1016/j.ijsolstr.2015.05.005.
  • [10] C. Qi, F. Jiang, S. Yang, A. Remennikov, Multi-scale characterization of novel re-entrant circular auxetic honeycombs under quasi-static crushing, Thin-Walled Structures. 169 (2021) 108314. https://doi.org/10.1016/j.tws.2021.108314.
  • [11] M.-H. Fu, Y. Chen, L.-L. Hu, Bilinear elastic characteristic of enhanced auxetic honeycombs, Compos Struct. 175 (2017) 101–110. https://doi.org/10.1016/j.compstruct.2017.04.007.
  • [12] K.P. Logakannan, V. Ramachandran, J. Rengaswamy, Z. Gao, D. Ruan, Quasi-static and dynamic compression behaviors of a novel auxetic structure, Compos Struct. 254 (2020) 112853. https://doi.org/10.1016/j.compstruct.2020.112853.
  • [13] M. Xu, D. Liu, P. Wang, Z. Zhang, H. Jia, H. Lei, D. Fang, In-plane compression behavior of hybrid honeycomb metastructures: Theoretical and experimental studies, Aerosp Sci Technol. 106 (2020) 106081. https://doi.org/10.1016/j.ast.2020.106081.
  • [14] H.L. Tan, Z.C. He, K.X. Li, E. Li, A.G. Cheng, B. Xu, In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio, Compos Struct. 229 (2019) 111415. https://doi.org/10.1016/j.compstruct.2019.111415.
  • [15] Y. Chen, T. Li, Z. Jia, F. Scarpa, C.-W. Yao, L. Wang, 3D printed hierarchical honeycombs with shape integrity under large compressive deformations, Mater Des. 137 (2018) 226–234. https://doi.org/10.1016/j.matdes.2017.10.028.
  • [16] [16] Y. Sun, N. Pugno, Hierarchical Fibers with a Negative Poisson’s Ratio for Tougher Composites, Materials. 6 (2013) 699–712. https://doi.org/10.3390/ma6020699.
  • [17] [17] X. Zhang, R. Tian, Z. Zhang, G. Li, W. Feng, In-plane elasticity of a novel vertical strut combined re-entrant honeycomb structure with negative Poisson’s ratio, Thin-Walled Structures. 163 (2021) 107634. https://doi.org/10.1016/j.tws.2021.107634.
  • [18] [18] S.Z. Khan, F. Mustahsan, E.R.I. Mahmoud, S.H. Masood, A novel modified re-entrant honeycomb structure to enhance the auxetic behavior: Analytical and numerical study by FEA, Mater Today Proc. 39 (2021) 1041–1045. https://doi.org/10.1016/j.matpr.2020.05.083.
  • [19] [19] YL Tezi: Numerical and experimental investigation of the impact performance of 3d lattices with negative poisson's ratio / Negatif poisson oranlı 3 boyutlu latislerin çarpma dayanıklılığın deneysel ve sayısal İncelenmesi Yazar:Altuğ Ataalp Danışman: Prof. Dr. Halit Süleyman Türkmen
  • [20] [20] F.Usta, Ökzetik Dolgulu Çarpışma Tüplerinin Dinamik Çarpma Yükleri Altında Deneysel Ve Sayısal Olarak İncelenmesi. Conference: 8. Ulusal Havacılık Ve Uzay Konferansı (UHUK-2020) At: Türk Hava Kurumu Üniversitesi, Ankara
  • [21] [21] Jay Bonner, Islamic geometric patterns, New York, USA, 1999.
  • [22] [22] M. Lei, W. Hong, Z. Zhao, C. Hamel, M. Chen, H. Lu, H.J. Qi, 3D Printing of Auxetic Metamaterials with Digitally Reprogrammable Shape, ACS Appl Mater Interfaces. 11 (2019) 22768–22776. https://doi.org/10.1021/acsami.9b06081.
  • [23] [23] H. Ateş, N. Kaya, Mechanical and Microstructural Properties of Friction Welded AISI 304 Stainless Steel to AISI 1060 Steel AISI 1060,
  • [24] [24] J. Zhang, G. Lu, Z. Wang, D. Ruan, A. Alomarah, Y. Durandet, Large deformation of an auxetic structure in tension: Experiments and finite element analysis, Compos Struct. 184 (2018) 92–101. https://doi.org/10.1016/j.compstruct.2017.09.076.
  • [25] [25 ]K. Meena, S. Singamneni, Investigation of a Novel Chiral S‐Shaped Auxetic Structure under Large Tensile Deformation, Physica Status Solidi (b) 257 (2020). https://doi.org/10.1002/pssb.202000239.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Tasarım ve Teknoloji
Yazarlar

Nuriye Nur Kaya 0000-0003-1538-6893

İhsan Toktaş 0000-0002-4371-1836

Erken Görünüm Tarihi 27 Haziran 2024
Yayımlanma Tarihi 29 Haziran 2024
Gönderilme Tarihi 20 Mayıs 2024
Kabul Tarihi 25 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 2

Kaynak Göster

APA Kaya, N. N., & Toktaş, İ. (2024). Özgün Bir Latis Yapı Tasarımının Auxetic Davranışının İncelenmesi. Gazi University Journal of Science Part C: Design and Technology, 12(2), 771-781. https://doi.org/10.29109/gujsc.1486707

                                     16168      16167     16166     21432        logo.png


    e-ISSN:2147-9526