Araştırma Makalesi
BibTex RIS Kaynak Göster

SOMBRERO Füzyon Reaktörünün Hidrojen Üretiminde Magnezyum Klorür (Mg-Cl) Döngüsünün Kullanımı

Yıl 2024, Cilt: 12 Sayı: 2, 596 - 604, 29.06.2024
https://doi.org/10.29109/gujsc.1487776

Öz

Bu çalışmanın amacı SOMBRERO füzyon reaktöründe Mg-Cl (magnezyum klorür) döngüsünün hidrojen üretim potansiyelini incelemektir. Yakıt bölgesi kalınlığı sabit tutularak %2, %6 ve %10 olmak üzere üç farklı UO2 nükleer yakıt yüzdesi kullanılmıştır. SOMBRERO füzyon reaktörünün performansı statik olarak değerlendirilmiştir. Nötronik hesaplamalar Monte Carlo nötron transport kodu yarmıyla yapılmıştır. Öncelikle trityum üretim oranı (TBR) ve enerji çoğaltım faktörü (M) değerlerinin nötronik olarak hesaplanmıştır. İkinci olarak enerji çoğaltım faktörü (M) kullanılarak hidrojen üretimi miktarı araştırılmıştır. En yüksek hidrojen üretimi %10 UO2 yakıt oranında 8,12687 kg/s olarak elde edilmiştir.

Kaynakça

  • [1] Veziroǧlu T. N. and Şahin S. 21st Century’s energy: Hydrogen energy system. Energy Convers. Manag. 2008; 49(7):1820–31.
  • [2] Ghorbani B, Zendehboudi S, Zhang Y, Zarrin H, Chatzis I. Thermochemical water-splitting structures for hydrogen production: Thermodynamic, economic, and environmental impacts. Energy Conversion and Management 2023; 297:1117599.
  • [3] Oruc O, Dincer I. Assessing the potential of thermo-chemical water splitting cycles: a bridge towards clean and sustainable hydrogen generation. Fuel 2021; 286:119325.
  • [4] Razi F, Hewage K, Sadiq R. A comparative assessment of thermodynamic and exergoeconomic performances of three thermochemical water-splitting cycles of chlorine family for hydrogen production. Energ Conver Manage 2022;271: 116313.
  • [5] Özdemir A, Genç G. A comprehensive comparative energy and exergy analysis in solar based hydrogen production systems. Int J Hydrogen Energy 2022;47: 12189–203.
  • [6] Asal Ş, Acır A. A study on nuclear hydrogen production using a novel approach cobalt-chlorine thermochemical cycle in a laser driver fission fusion blanket for various molten salt fuels. Progress in Nuclear Energy 2022;153:104443.
  • [7] Juárez-Martínez L C, Espinosa-Paredes G, Vázquez-Rodríguez A, Romero-Paredes H. Energy optimization of a Sulfur–Iodine thermochemical nuclear hydrogen production cycle. Nuclear Engineering and Technology 2021;53:2066-2073.
  • [8] Özkaya M, Acır A, Yalçın Ş. Investigation of the hydrogen production of the PACER fusion blanket integrated with Fe–Cl thermochemical water splitting cycle. Nuclear Engineering and Technology 2023;55:4287-4294.
  • [9] Asal Ş. and Acır A., ‘‘Utilization of the Cu–Cl thermochemical cycle for hydrogen production using a laser driver thorium molten salts’’ International Journal of Hydrogen Energy 2021;46:31133-31142.
  • [10] Demir N. Hydrogen production via steam-methane reforming in a SOMBRERO fusion breeder with ceramic fuel particles. International Journal of Hydrogen Energy 2013;38:853–860.
  • [11] Acır A., Özkaya M., Performance evaluation of the Fe–Cl and Mg–Cl cycle for hydrogen production of the minor actinide fuelled PACER fusion blanket, International Journal of Hydrogen Energy, 67, 2024, 634-643.
  • [12] Genç G. Hydrogen production potential of APEX fusion transmuter fueled minor actinide fluoride. International Journal of Hydrogen Energy 2010;35:10190–10201.
  • [13] Balta M T, Dincer I, Hepbasli A. Energy and exergy analyses of magnesium-chlorine (Mg-Cl) thermochemical cycle. International Journal of Hydrogen Energy 2012;37:4855-4862.
  • [14] Asal, Ş., Acır A., Dinçer İ., A study on integrated HTR-PM driven hydrogen production using thermochemical cycles, Energy Conversion and Management, 307, 2024, 118336
  • [15] S. Reyes, J. F. Latkowski, J. Sanz, and J. Gomez del Rio, Safety Assessment for Inertial Fusion Energy Power Plants: Methodology and Application to the Analysis of the HYLIFE-II and SOMBRERO Conceptual Designs, Journal of Fusion Energy, Vol. 20, Nos. 1/2, June 2001
  • [16] M. Tolga Balta, Ibrahim Dincer, Arif Hepbasli Performance assessment of solar-driven integrated Mg–Cl cycle for hydrogen production, International Journal of Hydrogen Energy, 39 (35), 2014, 20652-20661
  • [17] Özcan H, Dincer I. Performance investigation of magnesium–chloride hybrid thermochemical cycle for hydrogen production. International Journal of Hydrogen Energy 2014;39: 76-85.
  • [18] Çengel YA, Boles MA. Thermodynamics: an engineering approach. McGraw-Hill; 2011.
  • [19] NIST chemistry WebBook. 2018. http://webbook.nist.gov/ chemistry/.
  • [20] Briesmeister JF. A General Monte Carlo N-Particle Transport Code. LA-13709M. Los Alamos National Laboratory: MCNP; 2000
  • [21] Acır A., Özkaya M., Performance evaluation of the Fe–Cl and Mg–Cl cycle for hydrogen production of the minor actinide fuelled PACER fusion blanket, International Journal of Hydrogen Energy, 67, 2024, 634-643.

Utilization of Magnesium Chloride (Mg-Cl) cycle for Hydrogen Production of SOMBRERO Fusion Reactor

Yıl 2024, Cilt: 12 Sayı: 2, 596 - 604, 29.06.2024
https://doi.org/10.29109/gujsc.1487776

Öz

The aim of this study is to investigate the hydrogen production potential of the Mg-Cl (magnesium chloride) cycle in the SOMBRERO fusion reactor. Three different percentages of UO2 nuclear fuel, namely 2%, 6% and 10%, have been used while keeping the fuel zone thickness constant. The performance of the SOMBRERO fusion reactor has been considered statically. The neutronic calculations have performed with Monte Carlo neutron transport code. Firstly, it has been determined that the tritium breeding ratio (TBR) and energy multiplication factor (M) values depends on neutronically. Secondly, the amount of hydrogen production with by using energy multiplication factor (M) have been performed. The highest hydrogen production has been obtained as 8,12687 kg/s for 10% UO2 fuel ratio.

Kaynakça

  • [1] Veziroǧlu T. N. and Şahin S. 21st Century’s energy: Hydrogen energy system. Energy Convers. Manag. 2008; 49(7):1820–31.
  • [2] Ghorbani B, Zendehboudi S, Zhang Y, Zarrin H, Chatzis I. Thermochemical water-splitting structures for hydrogen production: Thermodynamic, economic, and environmental impacts. Energy Conversion and Management 2023; 297:1117599.
  • [3] Oruc O, Dincer I. Assessing the potential of thermo-chemical water splitting cycles: a bridge towards clean and sustainable hydrogen generation. Fuel 2021; 286:119325.
  • [4] Razi F, Hewage K, Sadiq R. A comparative assessment of thermodynamic and exergoeconomic performances of three thermochemical water-splitting cycles of chlorine family for hydrogen production. Energ Conver Manage 2022;271: 116313.
  • [5] Özdemir A, Genç G. A comprehensive comparative energy and exergy analysis in solar based hydrogen production systems. Int J Hydrogen Energy 2022;47: 12189–203.
  • [6] Asal Ş, Acır A. A study on nuclear hydrogen production using a novel approach cobalt-chlorine thermochemical cycle in a laser driver fission fusion blanket for various molten salt fuels. Progress in Nuclear Energy 2022;153:104443.
  • [7] Juárez-Martínez L C, Espinosa-Paredes G, Vázquez-Rodríguez A, Romero-Paredes H. Energy optimization of a Sulfur–Iodine thermochemical nuclear hydrogen production cycle. Nuclear Engineering and Technology 2021;53:2066-2073.
  • [8] Özkaya M, Acır A, Yalçın Ş. Investigation of the hydrogen production of the PACER fusion blanket integrated with Fe–Cl thermochemical water splitting cycle. Nuclear Engineering and Technology 2023;55:4287-4294.
  • [9] Asal Ş. and Acır A., ‘‘Utilization of the Cu–Cl thermochemical cycle for hydrogen production using a laser driver thorium molten salts’’ International Journal of Hydrogen Energy 2021;46:31133-31142.
  • [10] Demir N. Hydrogen production via steam-methane reforming in a SOMBRERO fusion breeder with ceramic fuel particles. International Journal of Hydrogen Energy 2013;38:853–860.
  • [11] Acır A., Özkaya M., Performance evaluation of the Fe–Cl and Mg–Cl cycle for hydrogen production of the minor actinide fuelled PACER fusion blanket, International Journal of Hydrogen Energy, 67, 2024, 634-643.
  • [12] Genç G. Hydrogen production potential of APEX fusion transmuter fueled minor actinide fluoride. International Journal of Hydrogen Energy 2010;35:10190–10201.
  • [13] Balta M T, Dincer I, Hepbasli A. Energy and exergy analyses of magnesium-chlorine (Mg-Cl) thermochemical cycle. International Journal of Hydrogen Energy 2012;37:4855-4862.
  • [14] Asal, Ş., Acır A., Dinçer İ., A study on integrated HTR-PM driven hydrogen production using thermochemical cycles, Energy Conversion and Management, 307, 2024, 118336
  • [15] S. Reyes, J. F. Latkowski, J. Sanz, and J. Gomez del Rio, Safety Assessment for Inertial Fusion Energy Power Plants: Methodology and Application to the Analysis of the HYLIFE-II and SOMBRERO Conceptual Designs, Journal of Fusion Energy, Vol. 20, Nos. 1/2, June 2001
  • [16] M. Tolga Balta, Ibrahim Dincer, Arif Hepbasli Performance assessment of solar-driven integrated Mg–Cl cycle for hydrogen production, International Journal of Hydrogen Energy, 39 (35), 2014, 20652-20661
  • [17] Özcan H, Dincer I. Performance investigation of magnesium–chloride hybrid thermochemical cycle for hydrogen production. International Journal of Hydrogen Energy 2014;39: 76-85.
  • [18] Çengel YA, Boles MA. Thermodynamics: an engineering approach. McGraw-Hill; 2011.
  • [19] NIST chemistry WebBook. 2018. http://webbook.nist.gov/ chemistry/.
  • [20] Briesmeister JF. A General Monte Carlo N-Particle Transport Code. LA-13709M. Los Alamos National Laboratory: MCNP; 2000
  • [21] Acır A., Özkaya M., Performance evaluation of the Fe–Cl and Mg–Cl cycle for hydrogen production of the minor actinide fuelled PACER fusion blanket, International Journal of Hydrogen Energy, 67, 2024, 634-643.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nükleer Bilimler
Bölüm Tasarım ve Teknoloji
Yazarlar

Gamze Şener 0000-0003-2826-879X

Adem Acır 0000-0002-9856-3623

Erken Görünüm Tarihi 28 Mayıs 2024
Yayımlanma Tarihi 29 Haziran 2024
Gönderilme Tarihi 21 Mayıs 2024
Kabul Tarihi 28 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 2

Kaynak Göster

APA Şener, G., & Acır, A. (2024). Utilization of Magnesium Chloride (Mg-Cl) cycle for Hydrogen Production of SOMBRERO Fusion Reactor. Gazi University Journal of Science Part C: Design and Technology, 12(2), 596-604. https://doi.org/10.29109/gujsc.1487776

                                     16168      16167     16166     21432        logo.png


    e-ISSN:2147-9526