Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 12 Sayı: 3, 451 - 463, 30.09.2024
https://doi.org/10.29109/gujsc.1491295

Öz

Proje Numarası

122M039

Kaynakça

  • [1] Jebasingh, V. K., & Herbert, G. M. J. (2016). A review of solar parabolic trough collector. In Renewable and Sustainable Energy Reviews (Vol. 54, pp. 1085–1091). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.10.043.
  • [2] Gharat, P. V., Bhalekar, S. S., Dalvi, V. H., Panse, S. V., Deshmukh, S. P., & Joshi, J. B. (2021). Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC) - A review. Renewable and Sustainable Energy Reviews, 145(March),111002. https://doi.org/10.1016/j.rser.2021.111002.
  • [3] Zou, B., Dong, J., Yao, Y., & Jiang, Y. (2017). A detailed study on the optical performance of parabolic trough solar collectors with Monte Carlo Ray Tracing method based on theoretical analysis. Solar Energy, 147, 189–201. https://doi.org/10.1016/j.solener.2017.01.055.
  • [4] Kalidasan, B., Hassan, M. A., Pandey, A. K., & Chinnasamy, S. (2023). Linear cavity solar receivers: A review. In Applied Thermal Engineering (Vol. 221). Elsevier Ltd. https://doi.org/10.1016/j.applthermaleng.2022.119815
  • [5] Daabo, A. M., Mahmoud, S., & Al-Dadah, R. K. (2016). The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications. Energy, 114, 513–525. https://doi.org/10.1016/j.energy.2016.08.025
  • [6] Slootweg, M., Craig, K. J., & Meyer, J. P. (2019). A computational approach to simulate the optical and thermal performance of a novel complex geometry solar tower molten salt cavity receiver. Solar Energy, 187, 13–29. https://doi.org/10.1016/j.solener.2019.05.003
  • [7] Kasaeian, A., Kouravand, A., Vaziri Rad, M. A., Maniee, S., & Pourfayaz, F. (2021). Cavity receivers in solar dish collectors: A geometric overview. Renewable Energy, 169, 53–79. https://doi.org/10.1016/j.renene.2020.12.106
  • [8] Loni, R., Ghobadian, B., Kasaeian, A. B., Akhlaghi, M. M., Bellos, E., & Najafi, G. (2020). Sensitivity analysis of parabolic trough concentrator using rectangular cavity receiver. Applied Thermal Engineering, 169(April 2019). https://doi.org/10.1016/j.applthermaleng.2020.114948
  • [9] Natraj, Rao, B. N., & Reddy, K. S. (2022). Optical and structural optimization of a large aperture solar parabolic trough collector. Sustainable Energy Technologies and Assessments, 53(PA), 102418. https://doi.org/10.1016/j.seta.2022.102418
  • [10] Gorji, T. B., & Ranjbar, A. A. (2015). Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology. Solar Energy, 122,314–325. https://doi.org/10.1016/j.solener.2015.09.00.
  • [11] Moghimi, M. A., Craig, K. J., & Meyer, J. P. (2015). Optimization of a trapezoidal cavity absorber for the Linear Fresnel Reflector. Solar Energy, 119, 343–361. https://doi.org/10.1016/j.solener.2015.07.009
  • [12] Afzal, A., Buradi, A., Jilte, R., Shaik, S., Kaladgi, A. R., Arıcı, M., Lee, C. T., & Nižetić, S. (2023). Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review. Renewable and Sustainable Energy Reviews, 173(July 2022). https://doi.org/10.1016/j.rser.2022.112903
  • [13] Ghazouani, M., Bouya, M., & Benaissa, M. (2020). Thermo-economic and exergy analysis and optimization of small PTC collectors for solar heat integration in industrial processes. Renewable Energy, 152, 984–998. https://doi.org/10.1016/j.renene.2020.01.109
  • [14] Moghadam, H., & Samimi, M. (2022). Effect of condenser geometrical feature on evacuated tube collector basin solar still performance: Productivity optimization using a Box-Behnken design model. Desalination, 542(June), 116092. https://doi.org/10.1016/j.desal.2022.116092
  • [15] Sharifzadeh, M., & Loni, R. (2024). Performance of a solar parabolic trough concentrator using vacuum linear V-shaped cavity receiver. Thermal Science and Engineering Progress (Vol. 51, 102609). https://doi.org/10.1016/j.tsep.2024.102609
  • [16] Ferrer, P., Mohamad, K., Cyulinyana, M. C., & Kaluba, V. (2023). Parameter optimization of the parabolic solar trough mirror with a cavity receiver unit. Applied Thermal Engineering 232, 121086. https://doi.org/10.1016/j.applthermaleng.2023.121086
  • [17] Taher, M. A. B., Pelay, U., Russeil, S., & Bougeard, D. (2023). A novel design to optimize the optical performances of parabolic trough collector using Taguchi, ANOVA and grey relational analysis methods. Renewable Energy 216, 119105. https://doi.org/10.1016/j.renene.2023.119105
  • [18] Loni, R., & Sharifzadeh, M. (2024). Performance comparison of a solar parabolic trough concentrator using different shapes of linear cavity receiver. Case Studies in Thermal Engineering 60, 104603. https://doi.org/10.1016/j.csite.2024.104603
  • [19] Facão, J., & Oliveira, A. C. (2011). Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Renewable Energy 36, 90-96. https://doi.org/10.1016/j.renene.2010.06.003
  • [20] Tariq, R., ohani, A., Xamán, J., Sayyaadi, H., Bassam, A., & Tzuc, O. M. (2023). Multi-objective optimization for the best possible thermal, electrical and overall energy performance of a novel perforated-type regenerative evaporative humidifier. Energy Conversion and Management 198, 111802. https://doi.org/10.1016/j.enconman.2019.111802
  • [21] Duffie, J. A., & Beckman, W. A. (1982). Solar engineering of thermal processes. In Design Studies (Vol. 3, Issue 3). https://doi.org/10.1016/0142-694x(82)90016
  • [22] Tutar, M., & Veci, I. (2016). Performance analysis of a horizontal axis 3-bladed Savonius type wave turbine in an experimental wave flume (EWF). Renewable Energy, 86, 8–25. https://doi.org/10.1016/j.renene.2015.07.079
  • [23] Hatami, M., Cuijpers, M. C. M., & Boot, M. D. (2015). Experimental optimization of the vanes geometry for a variable geometry turbocharger (VGT) using a Design of Experiment (DoE) approach. Energy Conversion and Management, 106, 1057–1070. https://doi.org/10.1016/j.enconman.2015.10.040
  • [24] Hill, W. J., & Hunter, W. G. (1966). A Review of Response Surface Methodology: A Literature Survey (Vol. 8, Issue 4).
  • [25] Chen, W. H., Carrera Uribe, M., Kwon, E. E., Lin, K. Y. A., Park, Y. K., Ding, L., & Saw, L. H. (2022). A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM). In Renewable and Sustainable Energy Reviews (Vol. 169). Elsevier Ltd. https://doi.org/10.1016/j.rser.2022.112917
  • [26] Şimşek, B., İç, Y. T., & Şimşek, E. H. (2016). A RSM-Based Multi-Response Optimization Application for Determining Optimal Mix Proportions of Standard Ready-Mixed Concrete. Arabian Journal for Science and Engineering, 41(4), 1435–1450. https://doi.org/10.1007/s13369-015-1987-0
  • [27] Dudley, E., Kolb, J., Mahoney, A., Mancini, T., M, S., & Kearney, D. (1994). Test results: SEGS LS-2 solar collector. Sandia National Laboratory. Report: SAND94- 1884.
  • [28] Hachicha, A. A., Rodríguez, I., Capdevila, R., & Oliva, A. (2013). Heat transfer analysis and numerical simulation of a parabolic trough solar collector. Applied Energy, 111, 581–592. https://doi.org/10.1016/j.apenergy.2013.04.067
  • [29] Pratticò, L., Fronza, N., Bartali, R., Chiappini, A., Sciubba, E., González-Aguilar, J., & Crema, L. (2021). Radiation propagation in a hierarchical solar volumetric absorber: Results of single-photon avalanche diode measurements and Monte Carlo ray tracing analysis. Renewable Energy, 180, 482–493. https://doi.org/10.1016/j.renene.2021.08.069
  • [30] Wendelin, T., Dobos, A., & Lewandowski, A. (2013). SolTrace: A Ray-Tracing Code for Complex Solar Optical Systems. http://www.osti.gov/bridge

Design optimization of a new cavity receiver for a parabolic trough solar collector

Yıl 2024, Cilt: 12 Sayı: 3, 451 - 463, 30.09.2024
https://doi.org/10.29109/gujsc.1491295

Öz

The most important parameter affecting the optical efficiency, the upper limit for an overall efficiency of parabolic trough solar collector (PTC), is the net absorbed heat rate by receiver on which solar beam radiation is concentrated. The objective of this study is to propose and optimize a new cavity receiver used in PTC for increasing optical efficiency. Three different geometries (triangle, rectangle and polygon), aperture widths, heights and positions of cavity receiver are taken as optimization parameters. A design of experiments (DoE) approach is used to evaluate the effects of these parameters on the absorbed radiation heat rate by receiver at the same time. SolTrace is used to investigate the effects of these parameters by optical analysis. The results indicate that the optimum cavity geometry is polygonal, and the cavity depth and aperture both are equal to 0.05 m. Moreover, it is found that the most effective parameter is the position of the cavity receiver, and the optimum position is at the focal line of the parabolic concentrator. The highest absorbed radiation rate by the cavity receiver and the optical efficiency of the PTC are equal to 3241.99 W and 81.05 % respectively for the optimum cavity receiver design.

Destekleyen Kurum

TÜBİTAK Başkanlığı ARDEB 1001 Proje

Proje Numarası

122M039

Teşekkür

This study was supported by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) [project number 122M039].

Kaynakça

  • [1] Jebasingh, V. K., & Herbert, G. M. J. (2016). A review of solar parabolic trough collector. In Renewable and Sustainable Energy Reviews (Vol. 54, pp. 1085–1091). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.10.043.
  • [2] Gharat, P. V., Bhalekar, S. S., Dalvi, V. H., Panse, S. V., Deshmukh, S. P., & Joshi, J. B. (2021). Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC) - A review. Renewable and Sustainable Energy Reviews, 145(March),111002. https://doi.org/10.1016/j.rser.2021.111002.
  • [3] Zou, B., Dong, J., Yao, Y., & Jiang, Y. (2017). A detailed study on the optical performance of parabolic trough solar collectors with Monte Carlo Ray Tracing method based on theoretical analysis. Solar Energy, 147, 189–201. https://doi.org/10.1016/j.solener.2017.01.055.
  • [4] Kalidasan, B., Hassan, M. A., Pandey, A. K., & Chinnasamy, S. (2023). Linear cavity solar receivers: A review. In Applied Thermal Engineering (Vol. 221). Elsevier Ltd. https://doi.org/10.1016/j.applthermaleng.2022.119815
  • [5] Daabo, A. M., Mahmoud, S., & Al-Dadah, R. K. (2016). The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications. Energy, 114, 513–525. https://doi.org/10.1016/j.energy.2016.08.025
  • [6] Slootweg, M., Craig, K. J., & Meyer, J. P. (2019). A computational approach to simulate the optical and thermal performance of a novel complex geometry solar tower molten salt cavity receiver. Solar Energy, 187, 13–29. https://doi.org/10.1016/j.solener.2019.05.003
  • [7] Kasaeian, A., Kouravand, A., Vaziri Rad, M. A., Maniee, S., & Pourfayaz, F. (2021). Cavity receivers in solar dish collectors: A geometric overview. Renewable Energy, 169, 53–79. https://doi.org/10.1016/j.renene.2020.12.106
  • [8] Loni, R., Ghobadian, B., Kasaeian, A. B., Akhlaghi, M. M., Bellos, E., & Najafi, G. (2020). Sensitivity analysis of parabolic trough concentrator using rectangular cavity receiver. Applied Thermal Engineering, 169(April 2019). https://doi.org/10.1016/j.applthermaleng.2020.114948
  • [9] Natraj, Rao, B. N., & Reddy, K. S. (2022). Optical and structural optimization of a large aperture solar parabolic trough collector. Sustainable Energy Technologies and Assessments, 53(PA), 102418. https://doi.org/10.1016/j.seta.2022.102418
  • [10] Gorji, T. B., & Ranjbar, A. A. (2015). Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology. Solar Energy, 122,314–325. https://doi.org/10.1016/j.solener.2015.09.00.
  • [11] Moghimi, M. A., Craig, K. J., & Meyer, J. P. (2015). Optimization of a trapezoidal cavity absorber for the Linear Fresnel Reflector. Solar Energy, 119, 343–361. https://doi.org/10.1016/j.solener.2015.07.009
  • [12] Afzal, A., Buradi, A., Jilte, R., Shaik, S., Kaladgi, A. R., Arıcı, M., Lee, C. T., & Nižetić, S. (2023). Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review. Renewable and Sustainable Energy Reviews, 173(July 2022). https://doi.org/10.1016/j.rser.2022.112903
  • [13] Ghazouani, M., Bouya, M., & Benaissa, M. (2020). Thermo-economic and exergy analysis and optimization of small PTC collectors for solar heat integration in industrial processes. Renewable Energy, 152, 984–998. https://doi.org/10.1016/j.renene.2020.01.109
  • [14] Moghadam, H., & Samimi, M. (2022). Effect of condenser geometrical feature on evacuated tube collector basin solar still performance: Productivity optimization using a Box-Behnken design model. Desalination, 542(June), 116092. https://doi.org/10.1016/j.desal.2022.116092
  • [15] Sharifzadeh, M., & Loni, R. (2024). Performance of a solar parabolic trough concentrator using vacuum linear V-shaped cavity receiver. Thermal Science and Engineering Progress (Vol. 51, 102609). https://doi.org/10.1016/j.tsep.2024.102609
  • [16] Ferrer, P., Mohamad, K., Cyulinyana, M. C., & Kaluba, V. (2023). Parameter optimization of the parabolic solar trough mirror with a cavity receiver unit. Applied Thermal Engineering 232, 121086. https://doi.org/10.1016/j.applthermaleng.2023.121086
  • [17] Taher, M. A. B., Pelay, U., Russeil, S., & Bougeard, D. (2023). A novel design to optimize the optical performances of parabolic trough collector using Taguchi, ANOVA and grey relational analysis methods. Renewable Energy 216, 119105. https://doi.org/10.1016/j.renene.2023.119105
  • [18] Loni, R., & Sharifzadeh, M. (2024). Performance comparison of a solar parabolic trough concentrator using different shapes of linear cavity receiver. Case Studies in Thermal Engineering 60, 104603. https://doi.org/10.1016/j.csite.2024.104603
  • [19] Facão, J., & Oliveira, A. C. (2011). Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Renewable Energy 36, 90-96. https://doi.org/10.1016/j.renene.2010.06.003
  • [20] Tariq, R., ohani, A., Xamán, J., Sayyaadi, H., Bassam, A., & Tzuc, O. M. (2023). Multi-objective optimization for the best possible thermal, electrical and overall energy performance of a novel perforated-type regenerative evaporative humidifier. Energy Conversion and Management 198, 111802. https://doi.org/10.1016/j.enconman.2019.111802
  • [21] Duffie, J. A., & Beckman, W. A. (1982). Solar engineering of thermal processes. In Design Studies (Vol. 3, Issue 3). https://doi.org/10.1016/0142-694x(82)90016
  • [22] Tutar, M., & Veci, I. (2016). Performance analysis of a horizontal axis 3-bladed Savonius type wave turbine in an experimental wave flume (EWF). Renewable Energy, 86, 8–25. https://doi.org/10.1016/j.renene.2015.07.079
  • [23] Hatami, M., Cuijpers, M. C. M., & Boot, M. D. (2015). Experimental optimization of the vanes geometry for a variable geometry turbocharger (VGT) using a Design of Experiment (DoE) approach. Energy Conversion and Management, 106, 1057–1070. https://doi.org/10.1016/j.enconman.2015.10.040
  • [24] Hill, W. J., & Hunter, W. G. (1966). A Review of Response Surface Methodology: A Literature Survey (Vol. 8, Issue 4).
  • [25] Chen, W. H., Carrera Uribe, M., Kwon, E. E., Lin, K. Y. A., Park, Y. K., Ding, L., & Saw, L. H. (2022). A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM). In Renewable and Sustainable Energy Reviews (Vol. 169). Elsevier Ltd. https://doi.org/10.1016/j.rser.2022.112917
  • [26] Şimşek, B., İç, Y. T., & Şimşek, E. H. (2016). A RSM-Based Multi-Response Optimization Application for Determining Optimal Mix Proportions of Standard Ready-Mixed Concrete. Arabian Journal for Science and Engineering, 41(4), 1435–1450. https://doi.org/10.1007/s13369-015-1987-0
  • [27] Dudley, E., Kolb, J., Mahoney, A., Mancini, T., M, S., & Kearney, D. (1994). Test results: SEGS LS-2 solar collector. Sandia National Laboratory. Report: SAND94- 1884.
  • [28] Hachicha, A. A., Rodríguez, I., Capdevila, R., & Oliva, A. (2013). Heat transfer analysis and numerical simulation of a parabolic trough solar collector. Applied Energy, 111, 581–592. https://doi.org/10.1016/j.apenergy.2013.04.067
  • [29] Pratticò, L., Fronza, N., Bartali, R., Chiappini, A., Sciubba, E., González-Aguilar, J., & Crema, L. (2021). Radiation propagation in a hierarchical solar volumetric absorber: Results of single-photon avalanche diode measurements and Monte Carlo ray tracing analysis. Renewable Energy, 180, 482–493. https://doi.org/10.1016/j.renene.2021.08.069
  • [30] Wendelin, T., Dobos, A., & Lewandowski, A. (2013). SolTrace: A Ray-Tracing Code for Complex Solar Optical Systems. http://www.osti.gov/bridge
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Güneş Enerjisi Sistemleri
Bölüm Tasarım ve Teknoloji
Yazarlar

Gülden Adıyaman 0000-0003-3469-8366

Levent Çolak 0000-0001-7611-3106

Proje Numarası 122M039
Erken Görünüm Tarihi 25 Temmuz 2024
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 28 Mayıs 2024
Kabul Tarihi 23 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 3

Kaynak Göster

APA Adıyaman, G., & Çolak, L. (2024). Design optimization of a new cavity receiver for a parabolic trough solar collector. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(3), 451-463. https://doi.org/10.29109/gujsc.1491295

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526