Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 12 Sayı: 3, 702 - 713, 30.09.2024
https://doi.org/10.29109/gujsc.1532980

Öz

Proje Numarası

-

Kaynakça

  • [1] Lamarsh, J. R., & Baratta, A. J. (2001). Introduction to nuclear engineering (Vol. 3, p. 783). Upper Saddle River, NJ: Prentice Hall.
  • [2] Monterroso Urrutia, E. A. (2021). Determination of burnup of nuclear fuel. Master’s thesis. Nuclear Engineering, University of Ljubljana.
  • [3] Marguet, S. (2018). The physics of nuclear reactors. Springer.
  • [4] Spence, G. R. (2014). Phoenix: A Reactor Burnup Code With Uncertainty Quantification, Doctoral dissertation, Nuclear Engineering, Texas A&M University, College Station, TX.
  • [5] Isotalo, A. (2013). Computational methods for burnup calculations with Monte Carlo neutronics, Doctoral dissertation, aalto university.
  • [6] Sogbadji, R. B. M. (2012). Neutronic study of the mono-recycling of americium in PWR and of the core conversion in MNSR using the MURE code, PhD thesis, Unıversity of paris sud.
  • [7] Haeck, W., & Verboomen, B. (2007). An optimum approach to Monte Carlo burnup. Nuclear Science and Engineering, 156(2), 180-196.
  • [8] Cacuci, D. G. (Ed.). (2010). Handbook of Nuclear Engineering: Vol. 1: Nuclear Engineering Fundamentals; Vol. 2: Reactor Design; Vol. 3: Reactor Analysis; Vol. 4: Reactors of Generations III and IV; Vol. 5: Fuel Cycles, Decommissioning, Waste Disposal and Safeguards (Vol. 1). Springer Science & Business Media.
  • [9] Ingersoll, D. T., & Carelli, M. D. (Eds.). (2014). Handbook of small modular nuclear reactors. Elsevier.
  • [10] Lewis, E. E. (2008). Fundamentals of nuclear reactor physics. Elsevier.
  • [11] Stacey, W. M. (2007). Nuclear reactor physics. John Wiley & Sons.
  • [12] Zreda, M., Desilets, D., Ferré, T. P. A., & Scott, R. L. (2008). Measuring soil moisture content non‐invasively at intermediate spatial scale using cosmic‐ray neutrons. Geophysical research letters, 35(21).
  • [13] Akbari, R., Nasr, M. A., D'Auria, F., Cammi, A., Maiorino, J. R., & de Stefani, G. L. (2024). Analysis of thorium-transuranic fuel deployment in a LW-SMR: A solution toward sustainable fuel supply for the future plants. Nuclear Engineering and Design, 421, 113090.
  • [14] Mehboob, K., Al-Zahrani, Y. A., Alhusawai, A., & Ali, M. (2023). Neutronic analysis of SMART reactor core for (U-Th) O2 and MOX fuel hybrid configurations. Arabian Journal for Science and Engineering, 48(6), 8127-8142.
  • [15] Prianka, S. E. A., & Prodhan, M. M. H. (2024). Evaluation of neutronic characteristics of accident tolerant fuel concepts in SMART reactor fuel assemblies using DRAGON. Nuclear Engineering and Design, 421, 113100.
  • [16] Pino-Medina, S., & François, J. L. (2021). Neutronic analysis of the NuScale core using accident tolerant fuels with different coating materials. Nuclear Engineering and Design, 377, 111169.
  • [17] Aziz, F., Rivai, A. K., Panitra, M., Dani, M., & Suharno, B. (2024). Accident Tolerant Fuel Cladding Materials for Light Water Reactors: Analysis of Neutronic Characteristics. International Journal of Technology, 15(3).
  • [18] Chen, S., & Yuan, C. (2020). Neutronic study of UO2-BeO fuel with various claddings. Nuclear Materials and Energy, 22, 100728.
  • [19] Liang, Y., Lan, B., Zhang, Q., Seidl, M., & Wang, X. (2022). Neutronic analysis of silicon carbide Cladding-ATF fuel combinations in small modular reactors. Annals of Nuclear Energy, 173, 109120.
  • [20] Chen, S., & Yuan, C. (2019). Minor Actinides transmutation in candidate accident tolerant fuel-claddings U3Si2-FeCrAl and U3Si2-SiC. Annals of Nuclear Energy, 127, 204-214.
  • [21] Rahimi, G., Hadad, K., Nematollahi, M., Zarifi, E., & Sahin, S. (2020). Comparison of semi-heavy water and H2O as coolant for a conceptual research reactor from the view point of neutronic parameters. Progress in Nuclear Energy, 118, 103126.
  • [22] Alam, S. B., Goodwin, C. S., & Parks, G. T. (2019). Parametric neutronics analyses of lattice geometry and coolant candidates for a soluble-boron-free civil marine SMR core using micro-heterogeneous duplex fuel. Annals of Nuclear Energy, 129, 1-12.
  • [23] Alam, S. B., Almutairi, B., Kumar, D., Tanim, S. H., Jaradat, S., Goodwin, C. S., ... & Parks, G. T. (2020). Neutronic feasibility of civil marine small modular reactor core using mixed D2O+ H2O coolant. Nuclear Engineering and Design, 359, 110449.
  • [24] Nagy, M. E., Aly, M. N., Gaber, F. A., & Dorrah, M. E. (2014). Neutronic behavior of reactor moderated by mixtures of light and heavy waters at different ratios. Annals of Nuclear Energy, 63, 548-555.
  • [25] Elzayat, T., Chertkov, Y. B., & Ashraf, O. (2022). Chemical spectral shift control method for VVER-1000 LEU fuel assembly benchmark. Annals of Nuclear Energy, 165, 108677.
  • [26] Lindley, B. A., & Parks, G. T. (2016). The Spectral Shift Control Reactor as an option for much improved uranium utilisation in single-batch SMRs. Nuclear Engineering and Design, 309, 75-83.
  • [27] Dupree, S. A. and Fraley, S. K., (2012). A Monte Carlo primer: A practical approach to radiation transport. Springer Science & Business Media.
  • [28] Kalos, M. H., & Whitlock, P. A., (2009). Monte Carlo methods. John Wiley & Sons.
  • [29] Kaplan, E., (1958). Monte Carlo methods for equilibrium solutions in neutron multiplication. University of California Lawrence Radiation Laboratory.
  • [30] Aleksandar Stoyanov Ivanov, (2015). High Fidelity Monte Carlo Based Reactor Physics Calculations, Karlsruher Institut für Technologie (KIT).
  • [31] X-5 Monte Carlo Team., (2003). MCNP-A General Monte Carlo N-Particle Transport Code, Version 5. LA-UR-03-1987, 1.
  • [32] Akbari-Jeyhouni, R., Ochbelagh, D. R., Maiorino, J. R., D'Auria, F., & de Stefani, G. L. (2018). The utilization of thorium in small modular reactors–Part I: Neutronic assessment. Annals of Nuclear Energy, 120, 422-430.
  • [33] Zhong, Y. (2022). A feasibility study of small modular reactor (SMR) power-performance optimisations based on the SMART system (Doctoral dissertation, University of Birmingham).
  • [34] Subki, H. (2020). Advances in small modular reactor technology developments.
  • [35] Leppänen, J. (2013). Serpent–a continuous-energy Monte Carlo reactor physics burnup calculation code. VTT Technical Research Centre of Finland, 4(455), 2023-09.
  • [36] Leppänen, J. (2010). SERPENT Monte Carlo reactor physics code.
  • [37] Anastasiadis, A. (2019). Calculation of γ-ray source spectra for used LWR nuclear fuels.

Neutronic analysis of mixed H2O/D2O moderated SMART reactor fuel assembly with varying fractions of D2O during the fuel burnup

Yıl 2024, Cilt: 12 Sayı: 3, 702 - 713, 30.09.2024
https://doi.org/10.29109/gujsc.1532980

Öz

The neutronic behavior of nuclear reactors is being investigated by considering different fuel, cladding, and neutron-moderating materials. In the present manuscript, two different assembly types of SMART small modular reactor with different enrichments and different numbers of IFBA rods are considered, and the effects of mixed heavy/light water moderator, with varying fractions of heavy water during the burnup, on the assembly cycle burnup are investigated. It is observed that, to extend the cycle burnup we have to use a higher fraction of D2O at the Beginning of the Cycle (BOC) whereas it reduces toward the End of the Cycle (EOC). A higher fraction of heavy water causes the neutron spectrum to shift to the resonance region, resulting in a higher capture rate of the fertile materials. This, in turn, causes an increase in the conversion ratio. on the contrary, toward the EOC, by increasing the light water fraction, the neutron spectrum becomes softer. This also causes an increase in the fission rate of fissile materials. Finally, a certain improvement in the cycle burnup is observed. Moreover, by implementing the proposed method on an assembly containing (Th+U)O2 fuel, the UO2 mass saving is calculated.

Etik Beyan

My previous name and surname: Bahram Rashidian Maleki

Proje Numarası

-

Kaynakça

  • [1] Lamarsh, J. R., & Baratta, A. J. (2001). Introduction to nuclear engineering (Vol. 3, p. 783). Upper Saddle River, NJ: Prentice Hall.
  • [2] Monterroso Urrutia, E. A. (2021). Determination of burnup of nuclear fuel. Master’s thesis. Nuclear Engineering, University of Ljubljana.
  • [3] Marguet, S. (2018). The physics of nuclear reactors. Springer.
  • [4] Spence, G. R. (2014). Phoenix: A Reactor Burnup Code With Uncertainty Quantification, Doctoral dissertation, Nuclear Engineering, Texas A&M University, College Station, TX.
  • [5] Isotalo, A. (2013). Computational methods for burnup calculations with Monte Carlo neutronics, Doctoral dissertation, aalto university.
  • [6] Sogbadji, R. B. M. (2012). Neutronic study of the mono-recycling of americium in PWR and of the core conversion in MNSR using the MURE code, PhD thesis, Unıversity of paris sud.
  • [7] Haeck, W., & Verboomen, B. (2007). An optimum approach to Monte Carlo burnup. Nuclear Science and Engineering, 156(2), 180-196.
  • [8] Cacuci, D. G. (Ed.). (2010). Handbook of Nuclear Engineering: Vol. 1: Nuclear Engineering Fundamentals; Vol. 2: Reactor Design; Vol. 3: Reactor Analysis; Vol. 4: Reactors of Generations III and IV; Vol. 5: Fuel Cycles, Decommissioning, Waste Disposal and Safeguards (Vol. 1). Springer Science & Business Media.
  • [9] Ingersoll, D. T., & Carelli, M. D. (Eds.). (2014). Handbook of small modular nuclear reactors. Elsevier.
  • [10] Lewis, E. E. (2008). Fundamentals of nuclear reactor physics. Elsevier.
  • [11] Stacey, W. M. (2007). Nuclear reactor physics. John Wiley & Sons.
  • [12] Zreda, M., Desilets, D., Ferré, T. P. A., & Scott, R. L. (2008). Measuring soil moisture content non‐invasively at intermediate spatial scale using cosmic‐ray neutrons. Geophysical research letters, 35(21).
  • [13] Akbari, R., Nasr, M. A., D'Auria, F., Cammi, A., Maiorino, J. R., & de Stefani, G. L. (2024). Analysis of thorium-transuranic fuel deployment in a LW-SMR: A solution toward sustainable fuel supply for the future plants. Nuclear Engineering and Design, 421, 113090.
  • [14] Mehboob, K., Al-Zahrani, Y. A., Alhusawai, A., & Ali, M. (2023). Neutronic analysis of SMART reactor core for (U-Th) O2 and MOX fuel hybrid configurations. Arabian Journal for Science and Engineering, 48(6), 8127-8142.
  • [15] Prianka, S. E. A., & Prodhan, M. M. H. (2024). Evaluation of neutronic characteristics of accident tolerant fuel concepts in SMART reactor fuel assemblies using DRAGON. Nuclear Engineering and Design, 421, 113100.
  • [16] Pino-Medina, S., & François, J. L. (2021). Neutronic analysis of the NuScale core using accident tolerant fuels with different coating materials. Nuclear Engineering and Design, 377, 111169.
  • [17] Aziz, F., Rivai, A. K., Panitra, M., Dani, M., & Suharno, B. (2024). Accident Tolerant Fuel Cladding Materials for Light Water Reactors: Analysis of Neutronic Characteristics. International Journal of Technology, 15(3).
  • [18] Chen, S., & Yuan, C. (2020). Neutronic study of UO2-BeO fuel with various claddings. Nuclear Materials and Energy, 22, 100728.
  • [19] Liang, Y., Lan, B., Zhang, Q., Seidl, M., & Wang, X. (2022). Neutronic analysis of silicon carbide Cladding-ATF fuel combinations in small modular reactors. Annals of Nuclear Energy, 173, 109120.
  • [20] Chen, S., & Yuan, C. (2019). Minor Actinides transmutation in candidate accident tolerant fuel-claddings U3Si2-FeCrAl and U3Si2-SiC. Annals of Nuclear Energy, 127, 204-214.
  • [21] Rahimi, G., Hadad, K., Nematollahi, M., Zarifi, E., & Sahin, S. (2020). Comparison of semi-heavy water and H2O as coolant for a conceptual research reactor from the view point of neutronic parameters. Progress in Nuclear Energy, 118, 103126.
  • [22] Alam, S. B., Goodwin, C. S., & Parks, G. T. (2019). Parametric neutronics analyses of lattice geometry and coolant candidates for a soluble-boron-free civil marine SMR core using micro-heterogeneous duplex fuel. Annals of Nuclear Energy, 129, 1-12.
  • [23] Alam, S. B., Almutairi, B., Kumar, D., Tanim, S. H., Jaradat, S., Goodwin, C. S., ... & Parks, G. T. (2020). Neutronic feasibility of civil marine small modular reactor core using mixed D2O+ H2O coolant. Nuclear Engineering and Design, 359, 110449.
  • [24] Nagy, M. E., Aly, M. N., Gaber, F. A., & Dorrah, M. E. (2014). Neutronic behavior of reactor moderated by mixtures of light and heavy waters at different ratios. Annals of Nuclear Energy, 63, 548-555.
  • [25] Elzayat, T., Chertkov, Y. B., & Ashraf, O. (2022). Chemical spectral shift control method for VVER-1000 LEU fuel assembly benchmark. Annals of Nuclear Energy, 165, 108677.
  • [26] Lindley, B. A., & Parks, G. T. (2016). The Spectral Shift Control Reactor as an option for much improved uranium utilisation in single-batch SMRs. Nuclear Engineering and Design, 309, 75-83.
  • [27] Dupree, S. A. and Fraley, S. K., (2012). A Monte Carlo primer: A practical approach to radiation transport. Springer Science & Business Media.
  • [28] Kalos, M. H., & Whitlock, P. A., (2009). Monte Carlo methods. John Wiley & Sons.
  • [29] Kaplan, E., (1958). Monte Carlo methods for equilibrium solutions in neutron multiplication. University of California Lawrence Radiation Laboratory.
  • [30] Aleksandar Stoyanov Ivanov, (2015). High Fidelity Monte Carlo Based Reactor Physics Calculations, Karlsruher Institut für Technologie (KIT).
  • [31] X-5 Monte Carlo Team., (2003). MCNP-A General Monte Carlo N-Particle Transport Code, Version 5. LA-UR-03-1987, 1.
  • [32] Akbari-Jeyhouni, R., Ochbelagh, D. R., Maiorino, J. R., D'Auria, F., & de Stefani, G. L. (2018). The utilization of thorium in small modular reactors–Part I: Neutronic assessment. Annals of Nuclear Energy, 120, 422-430.
  • [33] Zhong, Y. (2022). A feasibility study of small modular reactor (SMR) power-performance optimisations based on the SMART system (Doctoral dissertation, University of Birmingham).
  • [34] Subki, H. (2020). Advances in small modular reactor technology developments.
  • [35] Leppänen, J. (2013). Serpent–a continuous-energy Monte Carlo reactor physics burnup calculation code. VTT Technical Research Centre of Finland, 4(455), 2023-09.
  • [36] Leppänen, J. (2010). SERPENT Monte Carlo reactor physics code.
  • [37] Anastasiadis, A. (2019). Calculation of γ-ray source spectra for used LWR nuclear fuels.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nükleer Bilimler, Nükleer Uygulamalar
Bölüm Tasarım ve Teknoloji
Yazarlar

Behram Melikkendli 0000-0001-6312-2919

Proje Numarası -
Erken Görünüm Tarihi 26 Eylül 2024
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 13 Ağustos 2024
Kabul Tarihi 9 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 3

Kaynak Göster

APA Melikkendli, B. (2024). Neutronic analysis of mixed H2O/D2O moderated SMART reactor fuel assembly with varying fractions of D2O during the fuel burnup. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(3), 702-713. https://doi.org/10.29109/gujsc.1532980

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526