Araştırma Makalesi
BibTex RIS Kaynak Göster

Kardiyovasküler Hastalıkların Derin Öğrenme Algoritmaları İle Tanısı

Yıl 2024, Cilt: 12 Sayı: 4, 902 - 912, 31.12.2024
https://doi.org/10.29109/gujsc.1506335

Öz

Kardiyovasküler hastalıklar dünyada en ölümcül hastalıkların başında gelmektedir. Riski azaltmada erken teşhis oldukça önemlidir. Bu çalışmada Yapay Zekâ (YZ) algoritmaları kullanılarak Kardiyovasküler hastalıkların erken teşhisindeki etkisi araştırılmaktadır. Çalışmada derin öğrenme algoritmalarından ANN, CNN ve LSTM algoritmaları kullanılarak, Kardiyovasküler Hastalıkların teşhis edilmesi ve açıklanabilir YZ ile sınıflandırmanın daha şeffaf olarak sunulması amaçlanmıştır. Yapılan çalışmada bu üç yöntemin de benzer sonuçlar verdiği ve açıklanabilir YZ ile de neden hasta veya hasta olmadığına ilişkin bilgiler ortaya konulmuştur. Kullanılan üç YZ modelinde benzer sonuçlar elde edilmiştir. CNN modeli %73,5 en yüksek doğruluk oranı bulunmuştur. Bu bulgular, YZ modellerinin Hastalık teşhislerinde etkin bir araç olarak kullanılabileceğini ve Açıklanabilir YZ ile de daha şeffaf sonuçlar oluşturarak erken tanı ile tedavi süreçlerine katkı sağlayabileceğini ortaya koymaktadır.

Kaynakça

  • [1] Ö. P. Özkan, S. K. Büyükünal, Z. Yiğit, Y. İnci, F. Ş. Şakar, and D. Ö. Ersü, “Kardiyovasküler hastalık tanısı almış hastaların sağlıklı yaşam biçimi davranışlarının değerlendirilmesi,” Mersin Üniversitesi Sağlık Bilimleri Dergisi, vol. 12, no. 1, pp. 22-31, 2019.
  • [2] G. S. WHO, “Global status report on noncommunicable diseases 2010,” 2014.
  • [3] H. Arıcı, and S. T. Kavradım, “Kardiyovasküler Hastalıklarda Konfor,” Akdeniz Hemşirelik Dergisi, vol. 2, no. 1, pp. 32-39, 2023.
  • [4] B. Kolukisa, V. C. Gungor, and B. B. Gungor, "An ensemble feature selection methodology that incorporates domain knowledge for cardiovascular disease diagnosis." pp. 1-4.
  • [5] M. M. Ahsan, and Z. Siddique, “Machine learning-based heart disease diagnosis: A systematic literature review,” Artificial Intelligence in Medicine, vol. 128, pp. 102289, 2022.
  • [6] F. I. Alarsan, and M. Younes, “Analysis and classification of heart diseases using heartbeat features and machine learning algorithms,” Journal of big data, vol. 6, no. 1, pp. 1-15, 2019.
  • [7] P. Rubini, C. Subasini, A. V. Katharine, V. Kumaresan, S. G. Kumar, and T. Nithya, “A cardiovascular disease prediction using machine learning algorithms,” Annals of the Romanian Society for Cell Biology, pp. 904-912, 2021.
  • [8] A. Sengur, “An expert system based on principal component analysis, artificial immune system and fuzzy k-NN for diagnosis of valvular heart diseases,” Computers in biology and medicine, vol. 38, no. 3, pp. 329-338, 2008.
  • [9] İ. A. Çilhoroz, and Y. Çilhoroz, “Kardiyovasküler Hastalıklara Bağlı Ölümleri Etkileyen Faktörlerin Belirlenmesi: OECD Ülkeleri Üzerinde Bir Araştırma,” Acibadem Saglik Bilimleri Dergisi, vol. 12, no. 2, 2021.
  • [10] S. Erkuş, “Veri madenciliği yöntemleri ile kardiyovasküler hastalık tahminin yapılması,” Bahçeşehir Üniversitesi Fen Bilimleri Enstitüsü. İstanbul., 2015.
  • [11] G. Kaba, and S. B. Kalkan, “Kardiyovasküler Hastalık Tahmininde Makine Öğrenmesi Sınıflandırma Algoritmalarının Karşılaştırılması,” İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 21, no. 42, pp. 183-193, 2022.
  • [12] M. Swathy, and K. Saruladha, “A comparative study of classification and prediction of Cardio-Vascular Diseases (CVD) using Machine Learning and Deep Learning techniques,” ICT Express, vol. 8, no. 1, pp. 109-116, 2022.
  • [13] S. Ahmad, M. Z. Asghar, F. M. Alotaibi, and Y. D. Alotaibi, “Diagnosis of cardiovascular disease using deep learning technique,” Soft Computing, vol. 27, no. 13, pp. 8971-8990, 2023.
  • [14] T. Sharean, and G. Johncy, “Deep learning models on Heart Disease Estimation-A review,” Journal of Artificial Intelligence, vol. 4, no. 2, pp. 122-130, 2022.
  • [15] C. Y. Cheung, D. Xu, C.-Y. Cheng, C. Sabanayagam, Y.-C. Tham, M. Yu, T. H. Rim, C. Y. Chai, B. Gopinath, and P. Mitchell, “A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre,” Nature biomedical engineering, vol. 5, no. 6, pp. 498-508, 2021.
  • [16] Z. Alkayyali, S. A. B. Idris, and S. S. Abu-Naser, “A Systematic Literature Review of Deep and Machine Learning Algorithms in Cardiovascular Diseases Diagnosis,” Journal of Theoretical and Applied Information Technology, vol. 101, no. 4, pp. 1353-1365, 2023.
  • [17] M. Pawlicki, A. Pawlicka, R. Kozik, and M. Choraś, “Advanced insights through systematic analysis: Mapping future research directions and opportunities for xAI in deep learning and artificial intelligence used in cybersecurity,” Neurocomputing, pp. 127759, 2024.
  • [18] W. Saeed, and C. Omlin, “Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities,” Knowledge-Based Systems, vol. 263, pp. 110273, 2023.
  • [19] A. M. Groen, R. Kraan, S. F. Amirkhan, J. G. Daams, and M. Maas, “A systematic review on the use of explainability in deep learning systems for computer aided diagnosis in radiology: Limited use of explainable AI?,” European Journal of Radiology, vol. 157, pp. 110592, 2022.
  • [20] F. DOĞAN, and İ. TÜRKOĞLU, “Derin öğrenme modelleri ve uygulama alanlarına ilişkin bir derleme,” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 10, no. 2, pp. 409-445, 2019.
  • [21] A. Şeker, B. Diri, and H. H. Balık, “Derin öğrenme yöntemleri ve uygulamaları hakkında bir inceleme,” Gazi Mühendislik Bilimleri Dergisi, vol. 3, no. 3, pp. 47-64, 2017.
  • [22] B. Ataseven, “Yapay sinir ağlari ile öngörü modellemesi,” Öneri Dergisi, vol. 10, no. 39, pp. 101-115, 2013.
  • [23] A. Öter, O. Aydoğan, and D. Tuncel, “Automatic sleep stage classification using Artificial Neural Networks with Wavelet Transform,” Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 1, pp. 59-68, 2019.
  • [24] M. Karakurt, and İ. İşeri, “Patoloji görüntülerinin derin öğrenme yöntemleri ile sınıflandırılması,” Avrupa Bilim ve Teknoloji Dergisi, no. 33, pp. 192-206, 2022.
  • [25] J. Egger, C. Gsaxner, A. Pepe, K. L. Pomykala, F. Jonske, M. Kurz, J. Li, and J. Kleesiek, “Medical deep learning—A systematic meta-review,” Computer methods and programs in biomedicine, vol. 221, pp. 106874, 2022.
  • [26] P. Dhruv, and S. Naskar, “Image classification using convolutional neural network (CNN) and recurrent neural network (RNN): A review,” Machine learning and information processing: proceedings of ICMLIP 2019, pp. 367-381, 2020.
  • [27] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network,” Physica D: Nonlinear Phenomena, vol. 404, pp. 132306, 2020.
  • [28] B. Ersöz, Ş. Sağıroğlu, and H. İ. Bülbül, "A Short Review on Explainable Artificial Intelligence in Renewable Energy and Resources." pp. 247-252.
  • [29] R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian, Z. Wen, T. Shah, and G. Morgan, “Explainable AI (XAI): Core ideas, techniques, and solutions,” ACM Computing Surveys, vol. 55, no. 9, pp. 1-33, 2023.
  • [30] J. M. Darias, B. Díaz-Agudo, and J. A. Recio-Garcia, "A Systematic Review on Model-agnostic XAI Libraries." pp. 28-39.
  • [31] S. Sezer, A. Oter, B. Ersoz, C. Topcuoglu, H. İ. Bulbul, S. Sagiroglu, M. Akin, and G. Yilmaz, “Explainable artificial intelligence for LDL cholesterol prediction and classification,” Clinical Biochemistry, pp. 110791, 2024.
  • [32] A. Öter, B. Ersöz, Z. Berktaş, H. İ. Bülbül, E. Orhan, and Ş. Sağıroğlu, “An artificial intelligence model estimation for functionalized graphene quantum dot-based diode characteristics,” Physica Scripta, vol. 99, no. 5, pp. 056001, 2024/03/29, 2024.
  • [33] N. E. Campione, and D. C. Evans, “The accuracy and precision of body mass estimation in non‐avian dinosaurs,” Biological Reviews, vol. 95, no. 6, pp. 1759-1797, 2020.
  • [34] A. Öter, “Automatic Detection of Epileptic Seizures from EEG Signals Using Artificial Intelligence Methods,” Gazi University Journal of Science Part C: Design and Technology, pp. 1-1, 2024.
  • [35] H. Yan, Y. Jiang, J. Zheng, C. Peng, and Q. Li, “A multilayer perceptron-based medical decision support system for heart disease diagnosis,” Expert Systems with Applications, vol. 30, no. 2, pp. 272-281, 2006.
  • [36] S. Palaniappan, and R. Awang, "Intelligent heart disease prediction system using data mining techniques." pp. 108-115.
  • [37] Y. E. Shao, C.-D. Hou, and C.-C. Chiu, “Hybrid intelligent modeling schemes for heart disease classification,” Applied Soft Computing, vol. 14, pp. 47-52, 2014.
  • [38] N. Priyanka, and P. R. Kumar, "Usage of data mining techniques in predicting the heart diseases—Naïve Bayes & decision tree." pp. 1-7.

Prediction and Interpretation of Cardiovascular Diseases using Deep Learning Methods

Yıl 2024, Cilt: 12 Sayı: 4, 902 - 912, 31.12.2024
https://doi.org/10.29109/gujsc.1506335

Öz

Cardiovascular diseases are one of the deadliest diseases in the world, and early diagnosis is essential. This study investigates the effect of Artificial Intelligence algorithms on the early diagnosis of Cardiovascular Diseases. The aim of the study is to diagnose cardiovascular diseases by using artificial intelligence algorithms (ANN, CNN, and LSTM) and to present the classification more transparently with explainable artificial intelligence. Similar results were obtained in the three AI models used. The CNN model was found to have the highest accuracy rate of 73.5%. This study revealed that these three methods gave similar results, and with Explainable Artificial Intelligence, information was revealed about why the patient was or was not sick. These findings reveal that Artificial Intelligence models can be used as effective tools in disease diagnosis and that artificial intelligence can create more transparent results and contribute to early diagnosis and treatment processes.

Kaynakça

  • [1] Ö. P. Özkan, S. K. Büyükünal, Z. Yiğit, Y. İnci, F. Ş. Şakar, and D. Ö. Ersü, “Kardiyovasküler hastalık tanısı almış hastaların sağlıklı yaşam biçimi davranışlarının değerlendirilmesi,” Mersin Üniversitesi Sağlık Bilimleri Dergisi, vol. 12, no. 1, pp. 22-31, 2019.
  • [2] G. S. WHO, “Global status report on noncommunicable diseases 2010,” 2014.
  • [3] H. Arıcı, and S. T. Kavradım, “Kardiyovasküler Hastalıklarda Konfor,” Akdeniz Hemşirelik Dergisi, vol. 2, no. 1, pp. 32-39, 2023.
  • [4] B. Kolukisa, V. C. Gungor, and B. B. Gungor, "An ensemble feature selection methodology that incorporates domain knowledge for cardiovascular disease diagnosis." pp. 1-4.
  • [5] M. M. Ahsan, and Z. Siddique, “Machine learning-based heart disease diagnosis: A systematic literature review,” Artificial Intelligence in Medicine, vol. 128, pp. 102289, 2022.
  • [6] F. I. Alarsan, and M. Younes, “Analysis and classification of heart diseases using heartbeat features and machine learning algorithms,” Journal of big data, vol. 6, no. 1, pp. 1-15, 2019.
  • [7] P. Rubini, C. Subasini, A. V. Katharine, V. Kumaresan, S. G. Kumar, and T. Nithya, “A cardiovascular disease prediction using machine learning algorithms,” Annals of the Romanian Society for Cell Biology, pp. 904-912, 2021.
  • [8] A. Sengur, “An expert system based on principal component analysis, artificial immune system and fuzzy k-NN for diagnosis of valvular heart diseases,” Computers in biology and medicine, vol. 38, no. 3, pp. 329-338, 2008.
  • [9] İ. A. Çilhoroz, and Y. Çilhoroz, “Kardiyovasküler Hastalıklara Bağlı Ölümleri Etkileyen Faktörlerin Belirlenmesi: OECD Ülkeleri Üzerinde Bir Araştırma,” Acibadem Saglik Bilimleri Dergisi, vol. 12, no. 2, 2021.
  • [10] S. Erkuş, “Veri madenciliği yöntemleri ile kardiyovasküler hastalık tahminin yapılması,” Bahçeşehir Üniversitesi Fen Bilimleri Enstitüsü. İstanbul., 2015.
  • [11] G. Kaba, and S. B. Kalkan, “Kardiyovasküler Hastalık Tahmininde Makine Öğrenmesi Sınıflandırma Algoritmalarının Karşılaştırılması,” İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 21, no. 42, pp. 183-193, 2022.
  • [12] M. Swathy, and K. Saruladha, “A comparative study of classification and prediction of Cardio-Vascular Diseases (CVD) using Machine Learning and Deep Learning techniques,” ICT Express, vol. 8, no. 1, pp. 109-116, 2022.
  • [13] S. Ahmad, M. Z. Asghar, F. M. Alotaibi, and Y. D. Alotaibi, “Diagnosis of cardiovascular disease using deep learning technique,” Soft Computing, vol. 27, no. 13, pp. 8971-8990, 2023.
  • [14] T. Sharean, and G. Johncy, “Deep learning models on Heart Disease Estimation-A review,” Journal of Artificial Intelligence, vol. 4, no. 2, pp. 122-130, 2022.
  • [15] C. Y. Cheung, D. Xu, C.-Y. Cheng, C. Sabanayagam, Y.-C. Tham, M. Yu, T. H. Rim, C. Y. Chai, B. Gopinath, and P. Mitchell, “A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre,” Nature biomedical engineering, vol. 5, no. 6, pp. 498-508, 2021.
  • [16] Z. Alkayyali, S. A. B. Idris, and S. S. Abu-Naser, “A Systematic Literature Review of Deep and Machine Learning Algorithms in Cardiovascular Diseases Diagnosis,” Journal of Theoretical and Applied Information Technology, vol. 101, no. 4, pp. 1353-1365, 2023.
  • [17] M. Pawlicki, A. Pawlicka, R. Kozik, and M. Choraś, “Advanced insights through systematic analysis: Mapping future research directions and opportunities for xAI in deep learning and artificial intelligence used in cybersecurity,” Neurocomputing, pp. 127759, 2024.
  • [18] W. Saeed, and C. Omlin, “Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities,” Knowledge-Based Systems, vol. 263, pp. 110273, 2023.
  • [19] A. M. Groen, R. Kraan, S. F. Amirkhan, J. G. Daams, and M. Maas, “A systematic review on the use of explainability in deep learning systems for computer aided diagnosis in radiology: Limited use of explainable AI?,” European Journal of Radiology, vol. 157, pp. 110592, 2022.
  • [20] F. DOĞAN, and İ. TÜRKOĞLU, “Derin öğrenme modelleri ve uygulama alanlarına ilişkin bir derleme,” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 10, no. 2, pp. 409-445, 2019.
  • [21] A. Şeker, B. Diri, and H. H. Balık, “Derin öğrenme yöntemleri ve uygulamaları hakkında bir inceleme,” Gazi Mühendislik Bilimleri Dergisi, vol. 3, no. 3, pp. 47-64, 2017.
  • [22] B. Ataseven, “Yapay sinir ağlari ile öngörü modellemesi,” Öneri Dergisi, vol. 10, no. 39, pp. 101-115, 2013.
  • [23] A. Öter, O. Aydoğan, and D. Tuncel, “Automatic sleep stage classification using Artificial Neural Networks with Wavelet Transform,” Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 1, pp. 59-68, 2019.
  • [24] M. Karakurt, and İ. İşeri, “Patoloji görüntülerinin derin öğrenme yöntemleri ile sınıflandırılması,” Avrupa Bilim ve Teknoloji Dergisi, no. 33, pp. 192-206, 2022.
  • [25] J. Egger, C. Gsaxner, A. Pepe, K. L. Pomykala, F. Jonske, M. Kurz, J. Li, and J. Kleesiek, “Medical deep learning—A systematic meta-review,” Computer methods and programs in biomedicine, vol. 221, pp. 106874, 2022.
  • [26] P. Dhruv, and S. Naskar, “Image classification using convolutional neural network (CNN) and recurrent neural network (RNN): A review,” Machine learning and information processing: proceedings of ICMLIP 2019, pp. 367-381, 2020.
  • [27] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network,” Physica D: Nonlinear Phenomena, vol. 404, pp. 132306, 2020.
  • [28] B. Ersöz, Ş. Sağıroğlu, and H. İ. Bülbül, "A Short Review on Explainable Artificial Intelligence in Renewable Energy and Resources." pp. 247-252.
  • [29] R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian, Z. Wen, T. Shah, and G. Morgan, “Explainable AI (XAI): Core ideas, techniques, and solutions,” ACM Computing Surveys, vol. 55, no. 9, pp. 1-33, 2023.
  • [30] J. M. Darias, B. Díaz-Agudo, and J. A. Recio-Garcia, "A Systematic Review on Model-agnostic XAI Libraries." pp. 28-39.
  • [31] S. Sezer, A. Oter, B. Ersoz, C. Topcuoglu, H. İ. Bulbul, S. Sagiroglu, M. Akin, and G. Yilmaz, “Explainable artificial intelligence for LDL cholesterol prediction and classification,” Clinical Biochemistry, pp. 110791, 2024.
  • [32] A. Öter, B. Ersöz, Z. Berktaş, H. İ. Bülbül, E. Orhan, and Ş. Sağıroğlu, “An artificial intelligence model estimation for functionalized graphene quantum dot-based diode characteristics,” Physica Scripta, vol. 99, no. 5, pp. 056001, 2024/03/29, 2024.
  • [33] N. E. Campione, and D. C. Evans, “The accuracy and precision of body mass estimation in non‐avian dinosaurs,” Biological Reviews, vol. 95, no. 6, pp. 1759-1797, 2020.
  • [34] A. Öter, “Automatic Detection of Epileptic Seizures from EEG Signals Using Artificial Intelligence Methods,” Gazi University Journal of Science Part C: Design and Technology, pp. 1-1, 2024.
  • [35] H. Yan, Y. Jiang, J. Zheng, C. Peng, and Q. Li, “A multilayer perceptron-based medical decision support system for heart disease diagnosis,” Expert Systems with Applications, vol. 30, no. 2, pp. 272-281, 2006.
  • [36] S. Palaniappan, and R. Awang, "Intelligent heart disease prediction system using data mining techniques." pp. 108-115.
  • [37] Y. E. Shao, C.-D. Hou, and C.-C. Chiu, “Hybrid intelligent modeling schemes for heart disease classification,” Applied Soft Computing, vol. 14, pp. 47-52, 2014.
  • [38] N. Priyanka, and P. R. Kumar, "Usage of data mining techniques in predicting the heart diseases—Naïve Bayes & decision tree." pp. 1-7.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgi Sistemleri Eğitimi, Karar Desteği ve Grup Destek Sistemleri, Biyomedikal Tanı
Bölüm Tasarım ve Teknoloji
Yazarlar

Ali Vırıt 0000-0001-8278-8126

Ali Öter 0000-0002-9546-0602

Erken Görünüm Tarihi 21 Kasım 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 30 Haziran 2024
Kabul Tarihi 10 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 4

Kaynak Göster

APA Vırıt, A., & Öter, A. (2024). Kardiyovasküler Hastalıkların Derin Öğrenme Algoritmaları İle Tanısı. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(4), 902-912. https://doi.org/10.29109/gujsc.1506335

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526