Araştırma Makalesi
BibTex RIS Kaynak Göster

Ağır Hizmet Araçlarında Kullanılan Fren Disklerinde Mikroyapının Çatlak Dayanımına Etkisi

Yıl 2024, Cilt: 12 Sayı: 4, 913 - 924, 31.12.2024
https://doi.org/10.29109/gujsc.1512236

Öz

Bu çalışma, ağır hizmet araçlarında kullanılan fren disklerinin mikroyapısının, çatlak dayanımına olan etkisini detaylı bir şekilde incelemeyi ve bu dayanımı iyileştirmeyi hedeflemektedir. İlk aşamada, atalet dinamometresi testinde beklenenden daha erken çatlak oluşumu gösteren bir fren diski numunesi incelenmiştir. Mikroyapısal analiz sonucunda, malzeme içindeki homojen olmayan yapı ve azot boşlukları gibi çeşitli hata modları tespit edilmiştir. Bu hata modlarının fren diskinin çatlak dayanımını olumsuz yönde etkilediği görülmüştür.
Hata modlarını gidermek ve malzemenin mikroyapısal bütünlüğünü artırmak amacıyla bir dizi iyileştirici önlem uygulanmıştır. Bunlar arasında, döküm işlemi sırasında besleyici giriş sayısının arttırılması, yolluk tasarımının iyileştirilmesi ve zirkonlu aşılama uygulamaları bulunmaktadır. Besleyici girişlerinin arttırılması ve yolluk tasarımının iyileştirilmesi, malzeme akışını iyileştirerek daha homojen bir yapının elde edilmesini sağlamış, zirkonlu aşılama uygulaması ise mikroyapısal kusurların azaltılmasına yardımcı olmuştur.
Bu iyileştirici aksiyonlar sonrasında ikinci bir fren diski numunesi üretilmiştir. Yeni numunenin, atalet dinamometresi testlerinde, çatlak dayanımının belirgin bir şekilde arttığı gözlemlenmiştir. Yapılan mikroyapısal analizler, uygulanan önlemlerin malzeme içerisindeki homojenliği artırdığını ve azot boşluklarını büyük ölçüde giderdiğini göstermiştir. Sonuç olarak, ikinci numunenin mikroyapısının iyileştiği ve çatlak dayanımının arttığı doğrulanmıştır.
Bu çalışma, fren disklerinin mikroyapısal özelliklerinin mekanik performans üzerindeki kritik etkisini vurgulamakta ve mikroyapısal iyileştirmelerin çatlak dayanımını nasıl artırabileceğini göstermektedir. Çalışmada, fren disklerinin güvenilirliğini artırmak için mikroyapısal kontrollerin ve üretim süreci iyileştirmelerinin önemi ortaya koyulmuştur.

Kaynakça

  • [1] A. Rashid, Overview of Disc Brakes and Related Phenomena-A Review. International Journal of Vehicle Noise and Vibration, 10:4 (2014) 257-301.
  • [2] G. P. Voller, Analysis of Heat Dissipation from Railway and Automotive Friction Brakes. Doctoral Dissertation, Brunel University School of Engineering and Design PhD Theses, 2003.
  • [3] O. Maluf, M. Angeloni, M. T. Milan, D. Spinelli, W. W. Bose Filho, Development of Materials for Automotive Disc Brakes. Minerva, 4:2 (2007) 149-158.
  • [4] M. H. Dakhil, A. K. Rai, R. Reedy, A. A. Jabbar, Structural Design and Analysis of Disc Brake in Automobiles. International Journal of Mechanical and Production Engineering Research and Development, 4:1 (2014) 95-112.
  • [5] İ. C. Güleryüz, Ö. C. Yılmaz, Ağır Hizmet Aracı Bütünleşik Fren Diski ve Poyra Çiftinin Soğuma Süresinin Sayısal ve Deneysel Olarak İncelenmesi. Politeknik Dergisi, 27:2 (2023) 469-477.
  • [6] İ. C. Güleryüz, B. Yılmaz, Ağır Hizmet Aracı Fren Diski Soğuma Davranışının İncelenmesi. Gazi University Journal of Science Part C: Design and Technology, 8:4 (2020) 936-947.
  • [7] M. C. Pekşen, Gri Dökme Demir Üretiminde Metalürjik Silisyum Karbür Ve Ferro Silis Katkılarının Malzeme Üzerindeki Etkileri.
  • [8] M. H. Cho, S. J. Kim, R. H. Basch, J. W. Fash, H. Jang, Tribological Study of Gray Cast İron with Automotive Brake Linings: The Effect of Rotor Microstructure. Tribology International, 36:7 (2003) 537-545.
  • [9] G. Le Gigan, M. Ekh, T. Vernersson, R. Lunden, Modelling of Grey Cast Iron for Application to Brake Discs for Heavy Vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231:1 (2017) 35-49.
  • [10] W. Li, X. Yang, S. Wang, J. Xiao, Q. Hou, Comprehensive Analysis on the Performance and Material of Automobile Brake Discs. Metals, 10:3 (2020) 377.
  • [11] S. Fidaner, S. Çelik, H. Doğmuş, C. Süzen, A. D. Duran, Genel Dökümcülük Bilgisi. Milli Eğitim Basımevi, İstanbul, (1979).
  • [12] H. Lu, M. Liu, D. Yu, T. Zhou, H. Zhou, P. Zhang, H. Bao, Effects of Different Graphite Types on The Thermal Fatigue Behavior of Bionic Laser-Processed Gray Cast Iron. Metallurgical and Materials Transactions, A:49 (2018) 5848-5857.
  • [13] J. R. Davis, Classification and Basic Metallurgy of Cast Irons. ASM Specialty Handbook Cast Irons, (1996) 3-12.
  • [14] Microstructure of Cast Irons – Graphite Classification by Visual Analysis. International Organization for Standardization, (2019).
  • [15] L. Collini, G. Nicoletto, R. J. M. S. Konečná, Microstructure and Mechanical Properties of Pearlitic Gray Cast Iron. Materials Science and Engineering: A, 488:1-2 (2008) 529-539.
  • [16] S. Vazehrad, Shrinkage Porosity Characterization in Compacted Cast Iron Components. 2012.
  • [17] P. Idodo, S. F. M. Rayan, Reducing Casting Defects ın Pure Copper Casting: A Look at the Gating Design of High-Performance Blast Furnace Tuyeres. Jönköping University, (2022).
  • [18] J. Sertucha, J. Lacaze, Casting Defects in Sand-Mold Cast Irons—An Illustrated Review aith Emphasis on Spheroidal Graphite Cast Irons. Metals, 12:3 (2022) 504.
  • [19] E. F. Ryntz Jr, R. E. Schroeder, W. W. Chaput, W. O. Rassenfoss, The Formation of Blowholes in Nodular Iron Castings (Retroactive Coverage). Transactions of the American Foundrymen's Society, 91 (1983) 161-164.
  • [20] S. D. Sun, S. J. He, M. Q. Zhang, X. Ma, Study of Blowholes Formation and Its Prevention in Nodular Iron Castings. Key Engineering Materials, 584 (2014): 67-72.
  • [21] George M. Goodrich, Cast Iron Microstructure Anomalies and Their Causes. AFS Trans, 105 (1997) 669-683.
  • [22] H. Kambayashi, Y. Kurokawa, H. Ota, Y. Hoshiyama, H. Miyake, Evaluation with Surface Analysis Equipment, Of Casting Defects in Cast İron Articles. In Materials Science Forum, (2007) p. 1110-1115.
  • [23] R. T. Patil, V. S. Metri, S. S. Tambore, Causes of Casting Defects with Remedies. International Journal of Engineering Research & Technology, 4:11 (2015) 639-644.
  • [24] M. Javahery, M. Abbasi, Simulation of Casting Process: Case Study on the Gating and Feeding Design for Outlet Diaphragms of Iron Ore Ball Mill. Heat and Mass Transfer, 55 (2019) 1959-1967.
  • [25] R. Elliott, Cast Iron Technology. Butteworths, 1988.
  • [26] Y. Lin, Y. Zhang, N. Zhu, D. Lai, J. Huang, K. Wang, Effect of Nitrogen on the Microstructure and Mechanical Properties of Gray Cast Iron. Jom, 74:3 (2022) 954-962.
  • [27] J. Linder, A. Arvidsson, J. Kron, The Influence of Porosity on the Fatigue Strength of High‐Pressure Die Cast Aluminium. Fatigue & Fracture of Engineering Materials & Structures, 29:5 (2006) 357-363.
  • [28] M. S. Soiński, P. Jędrecki, K. Grzesiak, Inoculation of Grey Cast Iron with Master Alloys Containing Strontium and Zirconium. Archives of Foundry Engineering, 11:3 spec (2011) 195-198.
  • [29] J. Yamabe, M. Takagi, T. Matsui, T. Kimura, M. Sasaki, Development of disc brake rotors for trucks with high thermal fatigue strength. JSAE review, 23:1(2002) 105-112.
  • [30] L. C. Kumruoğlu, Lamel Grafitli ve Küresel Grafitli Dökme Demirlerde Karbon Eşdeğerinim Mekanik Özellikler ve Mikroyapıya Etkisinin İncelenmesi. Master's Thesis, Sakarya Üniversitesi, 2003.
  • [31] H. R. Abbasi, M. Bazdar, A. Halvaee. Effect of Phosphorus as an Alloying Element on Microstructure and Mechanical Properties of Pearlitic Gray Cast Iron. Materials Science and Engineering: A, 444:1-2 (2007) 314-317.
  • [32] C. Khuntrakool, S. Janudom, P. Muangjunburee, N. Mahathaninwong, T. Chucheep, T. Chotikarn, A Yodjan, Effects of Chemical Composition on Microstructure and Properties of High Phosphorus Grey Cast Iron Brake Shoe. International Journal of Metalcasting, 16:3 (2022) 1221-1234.
  • [33] Y. S. Chung, I. B. Kim, I. M. Park, Influence of Sulfur on the Inoculation Effect of Gray Cast Iron. Journal of Korea Foundry Society, 9:3 (1989) 221-227
  • [34] R. Gundlach, M. Meyer, L. Winardi, Influence of Mn and S on the Properties of Cast Iron Part III—Testing and Analysis. International Journal of Metalcasting, 9 (2015) 69–82.
  • [35] Grey cast irons (DIN EN 1561:1997-08). Standards Germany, (1997).
  • [36] G. P. Voller, Analysis of Heat Dissipation from Railway and Automotive Friction Brakes. Doctoral Dissertation, Brunel University School of Engineering and Design PhD Theses, (2003).
  • [37] Link, Model 6900 Ticari Araç Fren Dinamometresi, https://www.linkeng.com/
  • [38] A. Saydan, H. Gürün, A. Güldaş, O. Çavuşoğlu, Kalıplama Parametrelerinin Bakalit Malzemenin Darbe Dayanımına Etkisinin İncelenmesi. 1. Uluslararası Plastik ve Kauçuk Teknolojileri Sempozyumu ve Sergisi, Ankara, (2013).
  • [39] Metallic materials - Tensile testing - Part 1: Method of test at room temperature (ISO 6892-1:2009).
  • [40] R. L. Naro, Porosity Defects in Iron Castings from Mold-Metal Interface Reactions. AFS Transactions, 107 (1999) 839-851.
  • [41] S. L. Nimbulkar, R. S. Dalu, Design Optimization of Gating and Feeding System through Simulation Technique for Sand Casting of Wear Plate. Perspectives in Science, 8 (2016) 39-42.

Microstructural Impact on Crack Resistance in Heavy-Duty Vehicle Brake Discs

Yıl 2024, Cilt: 12 Sayı: 4, 913 - 924, 31.12.2024
https://doi.org/10.29109/gujsc.1512236

Öz

This study aims to comprehensively examine the microstructure of brake discs used in heavy-duty vehicles and its impact on crack resistance, with the goal of enhancing this resistance. In the initial phase, a brake disc sample exhibiting premature crack formation during inertia dynamometer testing was analyzed. Microstructural analysis revealed various defect modes such as non-homogeneous structure and nitrogen porosity within the material. These defect modes were found to adversely affect the crack resistance of the brake disc.
To address these issues and improve the microstructural integrity of the material, a series of corrective measures were implemented. These included increasing the feeder inlet numbers during the casting process, optimizing the gating system design, and applying zirconium inoculation. Increasing feeder inlets and improving gating system design improved material flow, resulting in a more homogeneous structure, while zirconium inoculation helped reduce microstructural defects.
Following these corrective actions, a second brake disc sample was produced. Observations during inertia dynamometer tests indicated a significant improvement in crack resistance for the new sample. Microstructural analyses confirmed that the implemented measures enhanced material homogeneity and largely eliminated nitrogen porosities. Consequently, the improved microstructure and increased crack resistance of the second sample were verified.
This study highlights the critical impact of microstructural characteristics of brake discs on mechanical performance and demonstrates how microstructural improvements can enhance crack resistance. It underscores the importance of microstructural controls and process enhancements in increasing the reliability of brake discs.

Kaynakça

  • [1] A. Rashid, Overview of Disc Brakes and Related Phenomena-A Review. International Journal of Vehicle Noise and Vibration, 10:4 (2014) 257-301.
  • [2] G. P. Voller, Analysis of Heat Dissipation from Railway and Automotive Friction Brakes. Doctoral Dissertation, Brunel University School of Engineering and Design PhD Theses, 2003.
  • [3] O. Maluf, M. Angeloni, M. T. Milan, D. Spinelli, W. W. Bose Filho, Development of Materials for Automotive Disc Brakes. Minerva, 4:2 (2007) 149-158.
  • [4] M. H. Dakhil, A. K. Rai, R. Reedy, A. A. Jabbar, Structural Design and Analysis of Disc Brake in Automobiles. International Journal of Mechanical and Production Engineering Research and Development, 4:1 (2014) 95-112.
  • [5] İ. C. Güleryüz, Ö. C. Yılmaz, Ağır Hizmet Aracı Bütünleşik Fren Diski ve Poyra Çiftinin Soğuma Süresinin Sayısal ve Deneysel Olarak İncelenmesi. Politeknik Dergisi, 27:2 (2023) 469-477.
  • [6] İ. C. Güleryüz, B. Yılmaz, Ağır Hizmet Aracı Fren Diski Soğuma Davranışının İncelenmesi. Gazi University Journal of Science Part C: Design and Technology, 8:4 (2020) 936-947.
  • [7] M. C. Pekşen, Gri Dökme Demir Üretiminde Metalürjik Silisyum Karbür Ve Ferro Silis Katkılarının Malzeme Üzerindeki Etkileri.
  • [8] M. H. Cho, S. J. Kim, R. H. Basch, J. W. Fash, H. Jang, Tribological Study of Gray Cast İron with Automotive Brake Linings: The Effect of Rotor Microstructure. Tribology International, 36:7 (2003) 537-545.
  • [9] G. Le Gigan, M. Ekh, T. Vernersson, R. Lunden, Modelling of Grey Cast Iron for Application to Brake Discs for Heavy Vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231:1 (2017) 35-49.
  • [10] W. Li, X. Yang, S. Wang, J. Xiao, Q. Hou, Comprehensive Analysis on the Performance and Material of Automobile Brake Discs. Metals, 10:3 (2020) 377.
  • [11] S. Fidaner, S. Çelik, H. Doğmuş, C. Süzen, A. D. Duran, Genel Dökümcülük Bilgisi. Milli Eğitim Basımevi, İstanbul, (1979).
  • [12] H. Lu, M. Liu, D. Yu, T. Zhou, H. Zhou, P. Zhang, H. Bao, Effects of Different Graphite Types on The Thermal Fatigue Behavior of Bionic Laser-Processed Gray Cast Iron. Metallurgical and Materials Transactions, A:49 (2018) 5848-5857.
  • [13] J. R. Davis, Classification and Basic Metallurgy of Cast Irons. ASM Specialty Handbook Cast Irons, (1996) 3-12.
  • [14] Microstructure of Cast Irons – Graphite Classification by Visual Analysis. International Organization for Standardization, (2019).
  • [15] L. Collini, G. Nicoletto, R. J. M. S. Konečná, Microstructure and Mechanical Properties of Pearlitic Gray Cast Iron. Materials Science and Engineering: A, 488:1-2 (2008) 529-539.
  • [16] S. Vazehrad, Shrinkage Porosity Characterization in Compacted Cast Iron Components. 2012.
  • [17] P. Idodo, S. F. M. Rayan, Reducing Casting Defects ın Pure Copper Casting: A Look at the Gating Design of High-Performance Blast Furnace Tuyeres. Jönköping University, (2022).
  • [18] J. Sertucha, J. Lacaze, Casting Defects in Sand-Mold Cast Irons—An Illustrated Review aith Emphasis on Spheroidal Graphite Cast Irons. Metals, 12:3 (2022) 504.
  • [19] E. F. Ryntz Jr, R. E. Schroeder, W. W. Chaput, W. O. Rassenfoss, The Formation of Blowholes in Nodular Iron Castings (Retroactive Coverage). Transactions of the American Foundrymen's Society, 91 (1983) 161-164.
  • [20] S. D. Sun, S. J. He, M. Q. Zhang, X. Ma, Study of Blowholes Formation and Its Prevention in Nodular Iron Castings. Key Engineering Materials, 584 (2014): 67-72.
  • [21] George M. Goodrich, Cast Iron Microstructure Anomalies and Their Causes. AFS Trans, 105 (1997) 669-683.
  • [22] H. Kambayashi, Y. Kurokawa, H. Ota, Y. Hoshiyama, H. Miyake, Evaluation with Surface Analysis Equipment, Of Casting Defects in Cast İron Articles. In Materials Science Forum, (2007) p. 1110-1115.
  • [23] R. T. Patil, V. S. Metri, S. S. Tambore, Causes of Casting Defects with Remedies. International Journal of Engineering Research & Technology, 4:11 (2015) 639-644.
  • [24] M. Javahery, M. Abbasi, Simulation of Casting Process: Case Study on the Gating and Feeding Design for Outlet Diaphragms of Iron Ore Ball Mill. Heat and Mass Transfer, 55 (2019) 1959-1967.
  • [25] R. Elliott, Cast Iron Technology. Butteworths, 1988.
  • [26] Y. Lin, Y. Zhang, N. Zhu, D. Lai, J. Huang, K. Wang, Effect of Nitrogen on the Microstructure and Mechanical Properties of Gray Cast Iron. Jom, 74:3 (2022) 954-962.
  • [27] J. Linder, A. Arvidsson, J. Kron, The Influence of Porosity on the Fatigue Strength of High‐Pressure Die Cast Aluminium. Fatigue & Fracture of Engineering Materials & Structures, 29:5 (2006) 357-363.
  • [28] M. S. Soiński, P. Jędrecki, K. Grzesiak, Inoculation of Grey Cast Iron with Master Alloys Containing Strontium and Zirconium. Archives of Foundry Engineering, 11:3 spec (2011) 195-198.
  • [29] J. Yamabe, M. Takagi, T. Matsui, T. Kimura, M. Sasaki, Development of disc brake rotors for trucks with high thermal fatigue strength. JSAE review, 23:1(2002) 105-112.
  • [30] L. C. Kumruoğlu, Lamel Grafitli ve Küresel Grafitli Dökme Demirlerde Karbon Eşdeğerinim Mekanik Özellikler ve Mikroyapıya Etkisinin İncelenmesi. Master's Thesis, Sakarya Üniversitesi, 2003.
  • [31] H. R. Abbasi, M. Bazdar, A. Halvaee. Effect of Phosphorus as an Alloying Element on Microstructure and Mechanical Properties of Pearlitic Gray Cast Iron. Materials Science and Engineering: A, 444:1-2 (2007) 314-317.
  • [32] C. Khuntrakool, S. Janudom, P. Muangjunburee, N. Mahathaninwong, T. Chucheep, T. Chotikarn, A Yodjan, Effects of Chemical Composition on Microstructure and Properties of High Phosphorus Grey Cast Iron Brake Shoe. International Journal of Metalcasting, 16:3 (2022) 1221-1234.
  • [33] Y. S. Chung, I. B. Kim, I. M. Park, Influence of Sulfur on the Inoculation Effect of Gray Cast Iron. Journal of Korea Foundry Society, 9:3 (1989) 221-227
  • [34] R. Gundlach, M. Meyer, L. Winardi, Influence of Mn and S on the Properties of Cast Iron Part III—Testing and Analysis. International Journal of Metalcasting, 9 (2015) 69–82.
  • [35] Grey cast irons (DIN EN 1561:1997-08). Standards Germany, (1997).
  • [36] G. P. Voller, Analysis of Heat Dissipation from Railway and Automotive Friction Brakes. Doctoral Dissertation, Brunel University School of Engineering and Design PhD Theses, (2003).
  • [37] Link, Model 6900 Ticari Araç Fren Dinamometresi, https://www.linkeng.com/
  • [38] A. Saydan, H. Gürün, A. Güldaş, O. Çavuşoğlu, Kalıplama Parametrelerinin Bakalit Malzemenin Darbe Dayanımına Etkisinin İncelenmesi. 1. Uluslararası Plastik ve Kauçuk Teknolojileri Sempozyumu ve Sergisi, Ankara, (2013).
  • [39] Metallic materials - Tensile testing - Part 1: Method of test at room temperature (ISO 6892-1:2009).
  • [40] R. L. Naro, Porosity Defects in Iron Castings from Mold-Metal Interface Reactions. AFS Transactions, 107 (1999) 839-851.
  • [41] S. L. Nimbulkar, R. S. Dalu, Design Optimization of Gating and Feeding System through Simulation Technique for Sand Casting of Wear Plate. Perspectives in Science, 8 (2016) 39-42.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Tasarım ve Davranışları
Bölüm Tasarım ve Teknoloji
Yazarlar

Zehra Çınarcık 0009-0005-1775-3425

Bora Güntay 0000-0002-8526-3285

Erken Görünüm Tarihi 21 Kasım 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 8 Temmuz 2024
Kabul Tarihi 9 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 4

Kaynak Göster

APA Çınarcık, Z., & Güntay, B. (2024). Ağır Hizmet Araçlarında Kullanılan Fren Disklerinde Mikroyapının Çatlak Dayanımına Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(4), 913-924. https://doi.org/10.29109/gujsc.1512236

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526