A Review on Wave Energy Harvesting Technologies
Yıl 2024,
Cilt: 12 Sayı: 4, 1047 - 1059, 31.12.2024
Alaaddin Yılmazer
Ali Ekber Özdemir
Öz
With the rapid development of technology, the demand for electrical energy is increasing every year. Although electrical energy is a very clean form of energy in its direct use, the use of fossil fuels in the production process causes environmental problems. In this context, renewable energy sources are of critical importance in terms of clean and sustainable energy production. Wave energy stands out as a relatively under-researched topic in this field. Our country, which is surrounded by sea on three sides and has an inland sea, needs to invest more in wave energy and support more studies in this field. This study analyses the historical development of wave energy and aims to provide a perspective for future research.
Etik Beyan
Çalışmamız etik kurul belgesi gerektirmemektedir
Kaynakça
- [1] Abraham, Tamir. (2017). Energy via Art. Arts and social sciences journal, 8(2):1-3. https://doi:10.4172/2151-6200.1000259
- [2] Mishmastnehi, M. (2021). Technological Heritage of Persian Windmills. Iran, 1–17. https://doi.org/10.1080/05786967.2021.1960885
- [3] Langdon, J. (1984). Technological Adaptation in Europe: The Case of the Windmill. Technology and Culture, 25(3), 520-545.
- [4] Langdon, J., & Watts, M. (2005). Tower Windmills in Medieval England: A Case of Arrested Development? Technology and Culture, 46(4), 697–718. http://www.jstor.org/stable/40060955
- [5] ] Rossi, C., & Russo, F. (2009). Ancient Engineers' Inventions: Precursors of the Present. Springer.
- [6] Britannica, T. Editors of Encyclopaedia (2024, April 5). Thomas Savery. Encyclopedia Britannica. https://www.britannica.com/biography/Thomas-Savery
- [7] Sander, C. (2022). Magnetism in Renaissance Science. In: Sgarbi, M. (eds) Encyclopedia of Renaissance Philosophy. Springer, Cham. https://doi.org/10.1007/978-3-319-14169-5_944
- [8] Britannica, T. Editors of Encyclopaedia (2024, May 9). Otto von Guericke. Encyclopedia Britannica. https://www.britannica.com/biography/Otto-von-Guericke
- [9] Assis, Andre & Bucciarelli, Louis. (2023). Coulomb's Memoirs on Torsion, Electricity, and Magnetism Translated into English.
- [10] Daemen, J. J. K. (2004). Coal Industry, History of. C. J. Cleveland (Ed.), Encyclopedia of Energy (ss. 457-473). Elsevier. https://doi.org/10.1016/B0-12-176480X/00043-7
- [11] Smil, V. (2004). World History and Energy. İçinde C. J. Cleveland (Ed.), Encyclopedia of Energy (ss. 549-561). Elsevier. https://doi.org/10.1016/B0-12-176480X/00025-5
- [12] Periman, R. D. (2004). Early Industrial World, Energy Flow in. İçinde C. J. Cleveland (Ed.), Encyclopedia of Energy (ss. 849-858). Elsevier. https://doi.org/10.1016/B0-12-176480-X/00010-3
- [13] Dincer, I. (1998). Energy and Environmental Impacts: Present and Future Perspectives. Energy Sources, 20(4-5), 427-453. https://doi.org/10.1080/00908319808970070
- [14] IEA (2024): Share of GHG emissions and total energy supply by product, World, 2021, https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy-highlights, IEA. Licence: CC BY 4.0 [20 mayıs 2024]
- [15] Energy: Global rise in electricity demand met entirely with renewables, report finds, in Engineering & Technology, vol. 17, no. 10, pp. 5-5, Nov. 2022, https://doi:10.1049/et.2022.1008.
- [16] IEA, Renewables 2023 Analysis and forecasts to 2028, https://iea.blob.core.windows.net/assets/96d66a8b-d502-476b-ba94-54ffda84cf72/Renewables_2023.pdf [29 Mayıs 2024]
- [17] Desiree Tullos, Assessing the influence of environmental impact assessments on science and policy: An analysis of the Three Gorges Project, Journal of Environmental Management, Volume 90, Supplement 3, 2009, Pages S208-S223, ISSN 0301-4797, https://doi.org/10.1016/j.jenvman.2008.07.031.
- [18] Ryan Stock, Benjamin K. Sovacool, Left in the dark: Colonial racial capitalism and solar energy transitions in India, Energy Research & Social Science, Volume 105, 2023, 103285, ISSN 2214-6296, https://doi.org/10.1016/j.erss.2023.103285.
- [19] Appendix A - China's 10GW Wind Power Base Planning, Editor(s): Ningbo Wang, Chongqing Kang, Dongming Ren, Large-Scale Wind Power Grid Integration, Academic Press, 2016, Page 313, ISBN 9780128498958, https://doi.org/10.1016/B978-0-12-849895-8.15001-8.
- [20] Qusay Hassan, Sameer Algburi, Aws Zuhair Sameen, Tariq J. Al-Musawi, Ali Khudhair Al-Jiboory, Hayder M. Salman, Bashar Mahmood Ali, Marek Jaszczur, A comprehensive review of international renewable energy growth, Energy and Built Environment, 2024, ISSN 2666-1233, https://doi.org/10.1016/j.enbenv.2023.12.002.
- [21] H. Xia, X. Wang, J. Shi, N. Jia, Y. Duan, Research on analysis method of tidal current energy resource characteristics, Marine Technol. Soc. J. 56 (6) (2022) 10–17. https://doi.org/10.4031/MTSJ.56.6.5
- [22] A. Procter, Demand Led Tidal Lagoon Power and Hydrogen Energy Storage-Supervisory Control and Optimisation, Uni, 2022 / Procter, A. (2022). Demand Led Tidal Lagoon Power and Hydrogen Energy Storage-Supervisory Control and Optimisation. University of South Wales (United Kingdom).
- [23] Z. L. Wang, T. Jiang, L. Xu. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy, 39, 2017, Pages 9-23, ISSN 2211-2855; https://doi.org/10.1016/j.nanoen.2017.06.035.
- [24] Ross, D. 1995. Power from the Waves. Oxford University Press, USA.
- [25] Heath, T. V. (2012). A review of oscillating water columns. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1959), 235-245. https://doi.org/10.1098/rsta.2011.0164
- [26] Konispoliatis, D. (2024). Floating Oscillating Water Column Wave Energy Converters: A Review of Developments. Journal of Energy and Power Technology, 6(1), Article 1. https://doi.org/10.21926/jept.2401005
[27] Müller, G. (2017). The Californian wave power craze of the late 19th and early 20th century. In Proceedings of the 12th European Wave and Tidal Energy Conference (EWTEC). https://www.researchgate.net/publication/33489394
- [28] Li, H., Sun, X., & Zhou, H. (2022, August). Wave energy: history, implementations, environmental impacts, and economics. In 2nd International Conference on Materials Chemistry and Environmental Engineering (CONF-MCEE 2022) (Vol. 12326, pp. 189-199). SPIE.Ea https://doi.org/10.1117/12.2646119
- [29] Morris-Thomas, M. T., Irvin, R. J., & Thiagarajan, K. P. (2007). An investigation into the hydrodynamic efficiency of an oscillating water column. J. Offshore Mech. Arct. Eng. Nov 2007, 129(4): 273-278. https://doi.org/10.1115/1.2426992
- [30] Aderinto, T., & Li, H. (2019). Review on power performance and efficiency of wave energy converters. Energies, 12(22), 4329. https://doi.org/10.3390/en12224329
- [31] Falcão, A. F. D. O. (2010). Wave energy utilization: A review of the technologies. Renewable and sustainable energy reviews, 14(3), 899-918. https://doi.org/10.1016/J.RSER.2009.11.003
- [32] Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., ... & Thorpe, T. (2002). Wave energy in Europe: current status and perspectives. Renewable and sustainable energy reviews, 6(5), 405-431. https://doi.org/10.1016/S1364-0321(02)00009-6
- [33] Saint Jean, M., Arfaoui, N., Brouillat, E., & Virapin, D. (2021). Patterns of technology knowledge in the case of ocean energy technologies. Journal of Innovation Economics & Management, 34(1), 101-133. https://doi.org/10.3917/jie.034.0101
- [34] Falcão, A. F., & Henriques, J. C. (2016). Oscillating-water-column wave energy converters and air turbines: A review. Renewable energy, 85, 1391-1424. https://doi.org/10.1016/j.renene.2015.07.086
- [35] Salter, S. Wave power. Nature 249, 720–724 (1974). https://doi.org/10.1038/249720a0
- [36] Evans, D. V. (1976). A theory for wave-power absorption by oscillating bodies. Journal of Fluid Mechanics, 77(1), 1–25. https://doi:10.1017/S0022112076001109
- [37] Salter, S. H. (1989). World progress in wave energy—1988. International Journal of Ambient Energy, 10(1), 3–24. https://doi.org/10.1080/01430750.1989.9675119
- [38] Salter, S. (2008). Looking Back. In: Cruz, J. (eds) Ocean Wave Energy. Green Energy and Technology (Virtual Series). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74895-3_2
- [39] Cruz, J. (2007). Ocean wave energy: current status and future prespectives. Springer Science & Business Media. https://doi.org/10.1007/978-3-540-74895-3
- [40] IRENA, E. (2020). Innovation outlook: ocean energy technologies. International Renewable Energy Agency Abu Dhabi, United Arab Emirates.
- [41] Budar, K., & Falnes, J. (1975). A resonant point absorber of ocean-wave power. Nature, 256(5517), 478-479. https://doi.org/10.1038/256478a0
- [42] Falnes, J., & Løvseth, J. (1991). Ocean wave energy. Energy policy, 19(8), 768-775. https://doi.org/10.1016/0301-4215(91)90046-Q
- [43] Mofor, L., Goldsmith, J., & Jones, F. (2014). Ocean Energy: Technology Readiness, Patents, Deployment Status and Outlook, International Renewable Energy Agency (IRENA) Report, Paris, August 2014.
- [44] López, I., Andreu, J., Ceballos, S., De Alegría, I. M., & Kortabarria, I. (2013). Review of wave energy technologies and the necessary power-equipment. Renewable and sustainable energy reviews, 27, 413-434. https://doi.org/10.1016/j.rser.2013.07.009
- [45] Guo, B., Wang, T., Jin, S., Duan, S., Yang, K., & Zhao, Y. (2022). A review of point absorber wave energy converters. Journal of Marine Science and Engineering, 10(10), 1534. https://doi.org/10.3390/jmse10101534
- [46] Thomas, G. (2008). The Theory Behind the Conversion of Ocean Wave Energy: a Review. In: Cruz, J. (eds) Ocean Wave Energy. Green Energy and Technology(Virtual Series). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74895-3_3
- [47] Skilhagen, S.E. (2010). Osmotic power — a new, renewable energy source. Desalination and Water Treatment, 15, 271-278. https://doi.org/10.5004/DWT.2010.1759
- [48] World Energy Council. (2016). World energy resources. World Energy Council.
- [49] Simoes, C., Vital, B., Sleutels, T., Saakes, M., & Brilman, W. (2022). Scaled-up multistage reverse electrodialysis pilot study with natural waters. Chemical Engineering Journal, 450, 138412. https://doi.org/10.1016/j.cej.2022.138412
- [50] Wang, Z. L. (2006). Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 312(5771), 242–246. https://doi:10.1126/science.1124005
- [51] Zhu, G., Lin, Z.-H., Jing, Q., Bai, P., Pan, C., Yang, Y., … Wang, Z. L. (2013). Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator. Nano Letters, 13(2), 847–853. doi:10.1021/nl4001053
Wang, Z. L., Jiang, T., & Xu, L. (2017). Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy, 39, 9–23. doi:10.1016/j.nanoen.2017.06.035
Yıl 2024,
Cilt: 12 Sayı: 4, 1047 - 1059, 31.12.2024
Alaaddin Yılmazer
Ali Ekber Özdemir
Etik Beyan
Çalışmamız Etik kurul belgesi gerektirmemektedir
Kaynakça
- [1] Abraham, Tamir. (2017). Energy via Art. Arts and social sciences journal, 8(2):1-3. https://doi:10.4172/2151-6200.1000259
- [2] Mishmastnehi, M. (2021). Technological Heritage of Persian Windmills. Iran, 1–17. https://doi.org/10.1080/05786967.2021.1960885
- [3] Langdon, J. (1984). Technological Adaptation in Europe: The Case of the Windmill. Technology and Culture, 25(3), 520-545.
- [4] Langdon, J., & Watts, M. (2005). Tower Windmills in Medieval England: A Case of Arrested Development? Technology and Culture, 46(4), 697–718. http://www.jstor.org/stable/40060955
- [5] ] Rossi, C., & Russo, F. (2009). Ancient Engineers' Inventions: Precursors of the Present. Springer.
- [6] Britannica, T. Editors of Encyclopaedia (2024, April 5). Thomas Savery. Encyclopedia Britannica. https://www.britannica.com/biography/Thomas-Savery
- [7] Sander, C. (2022). Magnetism in Renaissance Science. In: Sgarbi, M. (eds) Encyclopedia of Renaissance Philosophy. Springer, Cham. https://doi.org/10.1007/978-3-319-14169-5_944
- [8] Britannica, T. Editors of Encyclopaedia (2024, May 9). Otto von Guericke. Encyclopedia Britannica. https://www.britannica.com/biography/Otto-von-Guericke
- [9] Assis, Andre & Bucciarelli, Louis. (2023). Coulomb's Memoirs on Torsion, Electricity, and Magnetism Translated into English.
- [10] Daemen, J. J. K. (2004). Coal Industry, History of. C. J. Cleveland (Ed.), Encyclopedia of Energy (ss. 457-473). Elsevier. https://doi.org/10.1016/B0-12-176480X/00043-7
- [11] Smil, V. (2004). World History and Energy. İçinde C. J. Cleveland (Ed.), Encyclopedia of Energy (ss. 549-561). Elsevier. https://doi.org/10.1016/B0-12-176480X/00025-5
- [12] Periman, R. D. (2004). Early Industrial World, Energy Flow in. İçinde C. J. Cleveland (Ed.), Encyclopedia of Energy (ss. 849-858). Elsevier. https://doi.org/10.1016/B0-12-176480-X/00010-3
- [13] Dincer, I. (1998). Energy and Environmental Impacts: Present and Future Perspectives. Energy Sources, 20(4-5), 427-453. https://doi.org/10.1080/00908319808970070
- [14] IEA (2024): Share of GHG emissions and total energy supply by product, World, 2021, https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy-highlights, IEA. Licence: CC BY 4.0 [20 mayıs 2024]
- [15] Energy: Global rise in electricity demand met entirely with renewables, report finds, in Engineering & Technology, vol. 17, no. 10, pp. 5-5, Nov. 2022, https://doi:10.1049/et.2022.1008.
- [16] IEA, Renewables 2023 Analysis and forecasts to 2028, https://iea.blob.core.windows.net/assets/96d66a8b-d502-476b-ba94-54ffda84cf72/Renewables_2023.pdf [29 Mayıs 2024]
- [17] Desiree Tullos, Assessing the influence of environmental impact assessments on science and policy: An analysis of the Three Gorges Project, Journal of Environmental Management, Volume 90, Supplement 3, 2009, Pages S208-S223, ISSN 0301-4797, https://doi.org/10.1016/j.jenvman.2008.07.031.
- [18] Ryan Stock, Benjamin K. Sovacool, Left in the dark: Colonial racial capitalism and solar energy transitions in India, Energy Research & Social Science, Volume 105, 2023, 103285, ISSN 2214-6296, https://doi.org/10.1016/j.erss.2023.103285.
- [19] Appendix A - China's 10GW Wind Power Base Planning, Editor(s): Ningbo Wang, Chongqing Kang, Dongming Ren, Large-Scale Wind Power Grid Integration, Academic Press, 2016, Page 313, ISBN 9780128498958, https://doi.org/10.1016/B978-0-12-849895-8.15001-8.
- [20] Qusay Hassan, Sameer Algburi, Aws Zuhair Sameen, Tariq J. Al-Musawi, Ali Khudhair Al-Jiboory, Hayder M. Salman, Bashar Mahmood Ali, Marek Jaszczur, A comprehensive review of international renewable energy growth, Energy and Built Environment, 2024, ISSN 2666-1233, https://doi.org/10.1016/j.enbenv.2023.12.002.
- [21] H. Xia, X. Wang, J. Shi, N. Jia, Y. Duan, Research on analysis method of tidal current energy resource characteristics, Marine Technol. Soc. J. 56 (6) (2022) 10–17. https://doi.org/10.4031/MTSJ.56.6.5
- [22] A. Procter, Demand Led Tidal Lagoon Power and Hydrogen Energy Storage-Supervisory Control and Optimisation, Uni, 2022 / Procter, A. (2022). Demand Led Tidal Lagoon Power and Hydrogen Energy Storage-Supervisory Control and Optimisation. University of South Wales (United Kingdom).
- [23] Z. L. Wang, T. Jiang, L. Xu. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy, 39, 2017, Pages 9-23, ISSN 2211-2855; https://doi.org/10.1016/j.nanoen.2017.06.035.
- [24] Ross, D. 1995. Power from the Waves. Oxford University Press, USA.
- [25] Heath, T. V. (2012). A review of oscillating water columns. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1959), 235-245. https://doi.org/10.1098/rsta.2011.0164
- [26] Konispoliatis, D. (2024). Floating Oscillating Water Column Wave Energy Converters: A Review of Developments. Journal of Energy and Power Technology, 6(1), Article 1. https://doi.org/10.21926/jept.2401005
[27] Müller, G. (2017). The Californian wave power craze of the late 19th and early 20th century. In Proceedings of the 12th European Wave and Tidal Energy Conference (EWTEC). https://www.researchgate.net/publication/33489394
- [28] Li, H., Sun, X., & Zhou, H. (2022, August). Wave energy: history, implementations, environmental impacts, and economics. In 2nd International Conference on Materials Chemistry and Environmental Engineering (CONF-MCEE 2022) (Vol. 12326, pp. 189-199). SPIE.Ea https://doi.org/10.1117/12.2646119
- [29] Morris-Thomas, M. T., Irvin, R. J., & Thiagarajan, K. P. (2007). An investigation into the hydrodynamic efficiency of an oscillating water column. J. Offshore Mech. Arct. Eng. Nov 2007, 129(4): 273-278. https://doi.org/10.1115/1.2426992
- [30] Aderinto, T., & Li, H. (2019). Review on power performance and efficiency of wave energy converters. Energies, 12(22), 4329. https://doi.org/10.3390/en12224329
- [31] Falcão, A. F. D. O. (2010). Wave energy utilization: A review of the technologies. Renewable and sustainable energy reviews, 14(3), 899-918. https://doi.org/10.1016/J.RSER.2009.11.003
- [32] Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., ... & Thorpe, T. (2002). Wave energy in Europe: current status and perspectives. Renewable and sustainable energy reviews, 6(5), 405-431. https://doi.org/10.1016/S1364-0321(02)00009-6
- [33] Saint Jean, M., Arfaoui, N., Brouillat, E., & Virapin, D. (2021). Patterns of technology knowledge in the case of ocean energy technologies. Journal of Innovation Economics & Management, 34(1), 101-133. https://doi.org/10.3917/jie.034.0101
- [34] Falcão, A. F., & Henriques, J. C. (2016). Oscillating-water-column wave energy converters and air turbines: A review. Renewable energy, 85, 1391-1424. https://doi.org/10.1016/j.renene.2015.07.086
- [35] Salter, S. Wave power. Nature 249, 720–724 (1974). https://doi.org/10.1038/249720a0
- [36] Evans, D. V. (1976). A theory for wave-power absorption by oscillating bodies. Journal of Fluid Mechanics, 77(1), 1–25. https://doi:10.1017/S0022112076001109
- [37] Salter, S. H. (1989). World progress in wave energy—1988. International Journal of Ambient Energy, 10(1), 3–24. https://doi.org/10.1080/01430750.1989.9675119
- [38] Salter, S. (2008). Looking Back. In: Cruz, J. (eds) Ocean Wave Energy. Green Energy and Technology (Virtual Series). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74895-3_2
- [39] Cruz, J. (2007). Ocean wave energy: current status and future prespectives. Springer Science & Business Media. https://doi.org/10.1007/978-3-540-74895-3
- [40] IRENA, E. (2020). Innovation outlook: ocean energy technologies. International Renewable Energy Agency Abu Dhabi, United Arab Emirates.
- [41] Budar, K., & Falnes, J. (1975). A resonant point absorber of ocean-wave power. Nature, 256(5517), 478-479. https://doi.org/10.1038/256478a0
- [42] Falnes, J., & Løvseth, J. (1991). Ocean wave energy. Energy policy, 19(8), 768-775. https://doi.org/10.1016/0301-4215(91)90046-Q
- [43] Mofor, L., Goldsmith, J., & Jones, F. (2014). Ocean Energy: Technology Readiness, Patents, Deployment Status and Outlook, International Renewable Energy Agency (IRENA) Report, Paris, August 2014.
- [44] López, I., Andreu, J., Ceballos, S., De Alegría, I. M., & Kortabarria, I. (2013). Review of wave energy technologies and the necessary power-equipment. Renewable and sustainable energy reviews, 27, 413-434. https://doi.org/10.1016/j.rser.2013.07.009
- [45] Guo, B., Wang, T., Jin, S., Duan, S., Yang, K., & Zhao, Y. (2022). A review of point absorber wave energy converters. Journal of Marine Science and Engineering, 10(10), 1534. https://doi.org/10.3390/jmse10101534
- [46] Thomas, G. (2008). The Theory Behind the Conversion of Ocean Wave Energy: a Review. In: Cruz, J. (eds) Ocean Wave Energy. Green Energy and Technology(Virtual Series). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74895-3_3
- [47] Skilhagen, S.E. (2010). Osmotic power — a new, renewable energy source. Desalination and Water Treatment, 15, 271-278. https://doi.org/10.5004/DWT.2010.1759
- [48] World Energy Council. (2016). World energy resources. World Energy Council.
- [49] Simoes, C., Vital, B., Sleutels, T., Saakes, M., & Brilman, W. (2022). Scaled-up multistage reverse electrodialysis pilot study with natural waters. Chemical Engineering Journal, 450, 138412. https://doi.org/10.1016/j.cej.2022.138412
- [50] Wang, Z. L. (2006). Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 312(5771), 242–246. https://doi:10.1126/science.1124005
- [51] Zhu, G., Lin, Z.-H., Jing, Q., Bai, P., Pan, C., Yang, Y., … Wang, Z. L. (2013). Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator. Nano Letters, 13(2), 847–853. doi:10.1021/nl4001053
Wang, Z. L., Jiang, T., & Xu, L. (2017). Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy, 39, 9–23. doi:10.1016/j.nanoen.2017.06.035