Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 13 Sayı: 1, 330 - 340, 24.03.2025
https://doi.org/10.29109/gujsc.1579774

Öz

Kaynakça

  • [1] Ashby M. F. The properties of foams and lattices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2006; 364(1838): 15-30.
  • [2] Tagliavia G, Porfiri M, & Gupta N. Vinyl Esterĝ€"Glass Hollow Particle Composites: Dynamic Mechanical Properties at High Inclusion Volume Fraction. Journal of Composite Materials. 2009; 43(5):561–582.
  • [3] Singh K, Ohlan A, Saini P, & Dhawan S. K. Composite – super paramagnetic behavior and variable range hopping 1D conduction mechanism – synthesis and characterization. Polymers for Advanced Technologies. 2007; 229–236.
  • [4] Narita M, Higuchi M, Ogawa T, Wada S, Miura A, & Tadanaga K. Float zone growth and spectroscopic properties of Yb: CaYAlO4 single crystal for ultra-short pulse lasers. Optical Materials. 2018; 80: 57-61.
  • [5] Porfiri M, & Gupta N. Effect of volume fraction and wall thickness on the elastic properties of hollow particle filled composites. Composites Part B: Engineering. 2009; 40(2):166-173.
  • [6] Narkis M, Gerchcovich M, Puterman M, & Kenig S. Syntactic foams III. Three-phase materials produced from resin coated microballoons. Journal of Cellular Plastics. 1982; 18(4): 230-232.
  • [7] Maraş S, Yaman M, & Şansveren MF. Dynamic Analysis of Laminated Syntactic Foam Beams. 3 rd International Conference on Advanced Engineering Technologies. 2019.
  • [8] Huang C, Huang Z, Qin Y, Ding J, & Lv X. Mechanical and dynamic mechanical properties of epoxy syntactic foams reinforced by short carbon fiber. Polymer Composites. 2016; 37(7): 1960-1970.
  • [9] Karthikeyan CS, Sankaran S, & Kishore. Influence of chopped strand fibres on the flexural behaviour of a syntactic foam core system. Polymer international. 2000; 49(2): 158-162.
  • [10] Şansveren MF, & Yaman M. The effect of carbon nanofiber on the dynamic and mechanical properties of epoxy/glass microballoon syntactic foam. Advanced Composite Materials. 2019.
  • [11] Buddhacosa N, Galos J, Khatibi A, & Kandare E. Mechanical and vibration damping properties of multifunctional composites incorporating elastomeric particulates. In 13th International Conference on the Mechanical Behaviour of Materials. 2019; 155.
  • [12] Maraş S, & Yaman M. Experimental and numerical investigation of free vibration behaviours of sandwich syntactic foams. In Structures. 2023; 58: 105390.
  • [13] Rahmani O, Khalili SMR, Malekzadeh K, & Hadavinia HJCS. Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core. Composite Structures. 2009; 91(2):229-235.
  • [14] Waddar S, Jeyaraj P, & Doddamani M. Influence of axial compressive loads on buckling and free vibration response of surface-modified fly ash cenosphere/epoxy syntactic foams. Journal of Composite Materials. 2018; 52(19): 2621-2630.
  • [15] Maraş S, Yaman M, & Şansveren MF. Dynamic Analysis of Laminated Syntactic Foam Beams. 3 rd International Conference on Advanced Engineering Technologies. 2019.
  • [16] Al-Waily M, Raad H, & Njim EK. Free vibration analysis of sandwich plate-reinforced foam core adopting micro aluminum powder. Physics and Chemistry of Solid State. 2022; 23(4): 659-668.
  • [17] Wang YQ, Ye C, & Zu JW. Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions. International Journal of Mechanics and Materials in Design. 2019; 15: 333-344.
  • [18] Ashby MF, Evans T, Fleck NA, Hutchinson JW, Wadley HNG, & Gibson LJ. Metal foams: a design guide. Elsevier. 2000.
  • [19] Dahil L, Karabulut A, & Baspinar S. Damping properties of open pore aluminum foams produced by vacuum casting and NaCl dissolution process. Metalurgija. 2013; 52(4): 489-492.
  • [20] Lei Q, Ren J, Ren H, Chao H, & Du W. Study on dynamic characteristics of closed-cell aluminum foam. Vibroengineering Procedia. 2019; 28.142-147.
  • [21] Zapoměl J, Dekýš V, Ferfecki P, Sapietová, A, Sága M, & Žmindák M. Identification of material damping of a carbon composite bar and study of its effect on attenuation of its transient lateral vibrations. International journal of applied mechanics. 2015; 7(06):1550081.
  • [22] Roszkos CS, Bocko J, Kula T, & Šarloši J. Static and dynamic analyses of aluminum foam geometric models using the homogenization procedure and the FEA. Composites Part B: Engineering. 2019;171: 361-374.
  • [23] Dahil L, Karabulut A, & Baspinar S. Damping properties of open pore aluminum foams produced by vacuum casting and NaCl dissolution process. Metalurgija. 2013; 52(4): 489-492.
  • [24] Wang YQ, Ye C, & Zu JW. Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions. International Journal of Mechanics and Materials in Design. 2019; 15: 333-344.
  • [25] Ma YH, Tao N, Dai ML, Yang FJ, & He XY. Investigation on vibration response of aluminum foam beams using speckle interferometry. Experimental Techniques. 2018; 42: 69-77.
  • [26] Lei Q, Ren J, Ren H, Cha, H, & Du W. Study on dynamic characteristics of closed-cell aluminum foam. Vibro engineering Procedia. 2019; 28: 142-147.
  • [27] Cluff DRA, Esmaeili S. Compressive properties of a new metal – polymer hybrid material. Journal of Materials Science. 2009; 44:3867–3876.
  • [28] Potluri R, Raju MN, & Babu KRP. The process of converting geometric elements into finite elements is called meshing Finite element analysis of cellular foam core sandwich structures. Materials Today: Proceedings. 2017; 4(2): 2501-2510.
  • [29] Pandey R, Singh P, Khanna M, Murtaza Q. Metal foam manufacturing, mechanical properties and its designing aspects—a review. Advances in Manufacturing and Industrial Engineering: Select Proceedings of ICAPIE. 2021; 761-770.
  • [30] Kübra Çağla Çıbıkçı, Alüminyum ve EPS Dolgulu Sentetik Köpükten Oluşan Tabakalı Hibrit Köpüklerin Mekanik ve Dinamik Davranışlarının Deneysel ve Nümerik Olarak İncelenmesi (Doktora Tezi, Atatürk Üniversitesi, 2024; 109.
  • [31] Çıbıkçı KÇ, Yaman M. Experimental investigation of compressive behavior and vibration properties of layered hybrid foam formed by aluminum foam/EPS-filled syntactic foam. J Mater Sci. 2024; 59: 3636–365.

Numerical Modal Analysis of Foams with Different Types and Configurations

Yıl 2025, Cilt: 13 Sayı: 1, 330 - 340, 24.03.2025
https://doi.org/10.29109/gujsc.1579774

Öz

Thanks to the perfect combination of mechanical properties like high strength and rigidity with functional properties like thermo-acoustic insulation and vibration damping, foam structures are becoming increasingly attractive in engineering applications. Most of the research done so far has been focused on the mechanical properties of foams. On the other hand, understanding the vibration behavior of foams is vital since most failures in engineering applications are associated with violent vibrations. In this research, it is focused on the vibration analysis of foams with different types and configurations. In the context of vibration, modal analysis is a highly preferred method for fully understanding the structural behavior of materials. The Finite Element Method is commonly employed for numerical modal analysis to reveal the vibration characteristics of structures, including natural frequencies and corresponding mode shapes. With this objective, the natural frequencies and mode shapes of these foams were defined under both clamped-free and free-free boundary conditions. Subsequently, the effects of material application and boundary conditions were examined. The findings and results obtained can provide valuable insights to researchers and engineers for design applications.

Kaynakça

  • [1] Ashby M. F. The properties of foams and lattices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2006; 364(1838): 15-30.
  • [2] Tagliavia G, Porfiri M, & Gupta N. Vinyl Esterĝ€"Glass Hollow Particle Composites: Dynamic Mechanical Properties at High Inclusion Volume Fraction. Journal of Composite Materials. 2009; 43(5):561–582.
  • [3] Singh K, Ohlan A, Saini P, & Dhawan S. K. Composite – super paramagnetic behavior and variable range hopping 1D conduction mechanism – synthesis and characterization. Polymers for Advanced Technologies. 2007; 229–236.
  • [4] Narita M, Higuchi M, Ogawa T, Wada S, Miura A, & Tadanaga K. Float zone growth and spectroscopic properties of Yb: CaYAlO4 single crystal for ultra-short pulse lasers. Optical Materials. 2018; 80: 57-61.
  • [5] Porfiri M, & Gupta N. Effect of volume fraction and wall thickness on the elastic properties of hollow particle filled composites. Composites Part B: Engineering. 2009; 40(2):166-173.
  • [6] Narkis M, Gerchcovich M, Puterman M, & Kenig S. Syntactic foams III. Three-phase materials produced from resin coated microballoons. Journal of Cellular Plastics. 1982; 18(4): 230-232.
  • [7] Maraş S, Yaman M, & Şansveren MF. Dynamic Analysis of Laminated Syntactic Foam Beams. 3 rd International Conference on Advanced Engineering Technologies. 2019.
  • [8] Huang C, Huang Z, Qin Y, Ding J, & Lv X. Mechanical and dynamic mechanical properties of epoxy syntactic foams reinforced by short carbon fiber. Polymer Composites. 2016; 37(7): 1960-1970.
  • [9] Karthikeyan CS, Sankaran S, & Kishore. Influence of chopped strand fibres on the flexural behaviour of a syntactic foam core system. Polymer international. 2000; 49(2): 158-162.
  • [10] Şansveren MF, & Yaman M. The effect of carbon nanofiber on the dynamic and mechanical properties of epoxy/glass microballoon syntactic foam. Advanced Composite Materials. 2019.
  • [11] Buddhacosa N, Galos J, Khatibi A, & Kandare E. Mechanical and vibration damping properties of multifunctional composites incorporating elastomeric particulates. In 13th International Conference on the Mechanical Behaviour of Materials. 2019; 155.
  • [12] Maraş S, & Yaman M. Experimental and numerical investigation of free vibration behaviours of sandwich syntactic foams. In Structures. 2023; 58: 105390.
  • [13] Rahmani O, Khalili SMR, Malekzadeh K, & Hadavinia HJCS. Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core. Composite Structures. 2009; 91(2):229-235.
  • [14] Waddar S, Jeyaraj P, & Doddamani M. Influence of axial compressive loads on buckling and free vibration response of surface-modified fly ash cenosphere/epoxy syntactic foams. Journal of Composite Materials. 2018; 52(19): 2621-2630.
  • [15] Maraş S, Yaman M, & Şansveren MF. Dynamic Analysis of Laminated Syntactic Foam Beams. 3 rd International Conference on Advanced Engineering Technologies. 2019.
  • [16] Al-Waily M, Raad H, & Njim EK. Free vibration analysis of sandwich plate-reinforced foam core adopting micro aluminum powder. Physics and Chemistry of Solid State. 2022; 23(4): 659-668.
  • [17] Wang YQ, Ye C, & Zu JW. Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions. International Journal of Mechanics and Materials in Design. 2019; 15: 333-344.
  • [18] Ashby MF, Evans T, Fleck NA, Hutchinson JW, Wadley HNG, & Gibson LJ. Metal foams: a design guide. Elsevier. 2000.
  • [19] Dahil L, Karabulut A, & Baspinar S. Damping properties of open pore aluminum foams produced by vacuum casting and NaCl dissolution process. Metalurgija. 2013; 52(4): 489-492.
  • [20] Lei Q, Ren J, Ren H, Chao H, & Du W. Study on dynamic characteristics of closed-cell aluminum foam. Vibroengineering Procedia. 2019; 28.142-147.
  • [21] Zapoměl J, Dekýš V, Ferfecki P, Sapietová, A, Sága M, & Žmindák M. Identification of material damping of a carbon composite bar and study of its effect on attenuation of its transient lateral vibrations. International journal of applied mechanics. 2015; 7(06):1550081.
  • [22] Roszkos CS, Bocko J, Kula T, & Šarloši J. Static and dynamic analyses of aluminum foam geometric models using the homogenization procedure and the FEA. Composites Part B: Engineering. 2019;171: 361-374.
  • [23] Dahil L, Karabulut A, & Baspinar S. Damping properties of open pore aluminum foams produced by vacuum casting and NaCl dissolution process. Metalurgija. 2013; 52(4): 489-492.
  • [24] Wang YQ, Ye C, & Zu JW. Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions. International Journal of Mechanics and Materials in Design. 2019; 15: 333-344.
  • [25] Ma YH, Tao N, Dai ML, Yang FJ, & He XY. Investigation on vibration response of aluminum foam beams using speckle interferometry. Experimental Techniques. 2018; 42: 69-77.
  • [26] Lei Q, Ren J, Ren H, Cha, H, & Du W. Study on dynamic characteristics of closed-cell aluminum foam. Vibro engineering Procedia. 2019; 28: 142-147.
  • [27] Cluff DRA, Esmaeili S. Compressive properties of a new metal – polymer hybrid material. Journal of Materials Science. 2009; 44:3867–3876.
  • [28] Potluri R, Raju MN, & Babu KRP. The process of converting geometric elements into finite elements is called meshing Finite element analysis of cellular foam core sandwich structures. Materials Today: Proceedings. 2017; 4(2): 2501-2510.
  • [29] Pandey R, Singh P, Khanna M, Murtaza Q. Metal foam manufacturing, mechanical properties and its designing aspects—a review. Advances in Manufacturing and Industrial Engineering: Select Proceedings of ICAPIE. 2021; 761-770.
  • [30] Kübra Çağla Çıbıkçı, Alüminyum ve EPS Dolgulu Sentetik Köpükten Oluşan Tabakalı Hibrit Köpüklerin Mekanik ve Dinamik Davranışlarının Deneysel ve Nümerik Olarak İncelenmesi (Doktora Tezi, Atatürk Üniversitesi, 2024; 109.
  • [31] Çıbıkçı KÇ, Yaman M. Experimental investigation of compressive behavior and vibration properties of layered hybrid foam formed by aluminum foam/EPS-filled syntactic foam. J Mater Sci. 2024; 59: 3636–365.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Dinamikler, Titreşim ve Titreşim Kontrolü
Bölüm Tasarım ve Teknoloji
Yazarlar

Kübra Çağla Çıbıkçı 0000-0002-4060-5608

Mustafa Yaman Bu kişi benim 0000-0002-6929-8058

Erken Görünüm Tarihi 6 Şubat 2025
Yayımlanma Tarihi 24 Mart 2025
Gönderilme Tarihi 5 Kasım 2024
Kabul Tarihi 4 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Çıbıkçı, K. Ç., & Yaman, M. (2025). Numerical Modal Analysis of Foams with Different Types and Configurations. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(1), 330-340. https://doi.org/10.29109/gujsc.1579774

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526