Araştırma Makalesi
BibTex RIS Kaynak Göster

Alüminyum Matrisli Silisyum Nitrür Takviyeli Metalik Köpük Üretimi ve Karakterizasyonu

Yıl 2025, Cilt: 13 Sayı: 3, 1019 - 1030, 30.09.2025
https://doi.org/10.29109/gujsc.1734891

Öz

Metalik köpükler, yapılarında %90’a kadar gözenek ihtiva eden hafif malzemelerdir. Düşük yoğunlukları ve yüksek enerji absorbe etme kapasiteleri sayesinde başta otomotiv, uzay ve savunma sanayii olmak üzere birçok alanda kullanılmaktadır. Bu çalışmada %0, %2 ve %4 oranlarında silisyum nitrür (Si3N4) takviyesinin Al esaslı metalik köpüklerin makroyapı, mikroyapı, yoğunluk ve basma dayanımları üzerindeki etkileri incelenmiştir. Çalışmada ön alaşımlı Alumix 231 tozu, Si3N4 tozu ve köpürtücü ajan olarak kullanılan titanyum hidrür (TiH2) tozları kullanılmıştır. Tozlar karıştırmanın ardından sırasıyla soğuk ve sıcak olarak preslenerek preformlar elde edilmiştir. Elde edilen preformlar sınırlayıcı bir kalıbın içerisinde köpürtülerek 30x30x30 mm ebatlarında küp şeklinde metalik köpük numuneler elde edilmiştir. Köpük numunelerin mekanik özelliklerinin belirlenmesi amacıyla uygulanan basma testi sonucunda farklı oranlarda silisyum nitrür takviyeli numunelerin basma dayanımında belirgin bir fark gözlemlenmemiştir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1919B012318446

Teşekkür

“2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı” kapsamında çalışmamıza katkı sunan ve destekleyen TÜBİTAK’a teşekkürlerimizi sunarız.

Kaynakça

  • [1] Şenel, C. M., Gürbüz, M., Koç, E. 2015. “Grafen Takviyeli Alüminyum Matrisli Yeni Nesil Kompozitler,” Mühendis ve Makina, cilt 56, sayı 669, s. 36-47.
  • [2] Rosso M. 2006, Ceramic and metal matrix composites: Routes and properties. Journal of Materials Processing Technology, 175 (364-375), (2006).
  • [3] Mahajan G.V., Aher V.S. Composite material: A review over current development and automotive application, International Journal of Scientific and Research Publications, 2 (1-5), (2012).
  • [4] Babalola P.O., Bolu C.A., et all. Development of aluminium matrix composites: A review, Journal of Engineering and Technology Research, l(1-11), (2014).
  • [5] Sahu P.S., Banchhor R. Effect of different reinforcement on mechanical properties of aluminium metal matrix composites, Res. J. Engineering Sci., 6 (39-45), (2017).
  • [6] Mattli M.R., Matli R.R et all. Structural and mechanical properties of amorphous Si3N4 nanoparticles reinforced Al matrix composites prepared by microwave sintering. Ceramics, 2 (126-134), (2019).
  • [7] Bedir F. Characteristic properties of Al-Cu-SiCp and Al-Cu-B4Cp composites produced by hot pressing method under nitrogen atmosphere, Materials and Design, 28(1238-1244), (2007).
  • [8] Ramnath B.V., Elanchezhian C. Alumınıum metal matrıx composıtes - A revıew, Advanced Materials Science, 38(55-60), (2014).
  • [9] Attar S., Nagaral M., et all. A review on particulate reinforced aluminum metal matrix composites, Journal of Emerging Technologies and Innovative Research, 2(225-229), (2015).
  • [10] Ervina Efzan M.N., Siti Syazwani N., and Abdullah M.M.A.B. Fabrication method of aluminum matrix composite (Amcs): A review, Key Engineering Materials, 700(02-110), (2016).
  • [11] Thirumoorthy A, Arjunan T.V., Senthil Kumar K.L. Latest research development in aluminum matrix with particulate reinforcement composites – A review, Materials Today: Proceedings 5(1657–1665), (2018).
  • [12] Manohar G., Dey A., Pandey K.M. and Maity S.R. Fabrication of metal matrix composites by powder metallurgy: A review, International Conference on Electrical, Electronics, Materials and Applied Science, 020041(1-8), (2019).
  • [13] Gökmen, U. Et Al. 2023. Microstructural and Radioactive Shielding Analyses of Alumix-231 and Alumix-231 Reinforced with B4C/SiC/Al2O3 Particles Produced through Hot Pressing. ACS OMEGA, vol.8, no.39 , 35755-35767.
  • [14] Akbulut, A., Tatlı, Z., Çalışkan, F. 2009. “Si3N4 Seramiklerinin Al2O3, MgO Katkıları Kullanılarak Basınçsız Sinterlenmesi”, 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Türkiye.
  • [15] Kumar, N. M., Kumaran, S.S., Kumaraswamidhas, L. A. 2015. “An Investigation of Mechanical Properties and Corrosion Resistance of Al2618 Alloy Reinforced with Si3N4, AlN and ZrB2 Composites”, Journal of Alloys and Compounds, vol. 652, p. 244-249.
  • [16] H. Arik, H., "Effect of Mechanical Alloying Process on Mechanical Properties of a-Si3N4 Reinforced Aluminum-Based Composite Materials", Materials and Design, vol.29, pp.1856-1861, 2008.
  • [17] Kumar, N. M., Kumaran, S. S., Kumaraswamidhas, L. A. 2016. “Aerospace Application on Al2618 with Reinforced-Si3N4, AlN and ZrB2 in-situ Composites”, Journal of Alloys and Compounds, vol. 672, p. 238-250.
  • [18] P. Sharma, S. Sharma, D. Khanduja, "Production and Some Properties of Si3N4 Reinforced Aluminium Alloy Composites", Journal of Asian Ceramic Societies, vol.3, pp.352-359, 2015.
  • [19] Ashby, M.F., A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson and H.N.G. Wadley, Metal Foams: A Design Guide, Butterworth Heineman, 2000.
  • [20] Altenpohl, D. G. 1980. Present Structure and Future Trends in Key Materials Industries.Materials in World Perspective: Assessment of Resources, Technologies and Trends forKey Materials Industries, Springer Berlin Heidelberg, Berlin, Heidelberg, Heidelberg p.21–126.
  • [21] Özen, M., Taşkın, N. Ü. (2021). Alüminyum Kompozit Köpük Malzemelerde Takviye Oranına Bağlı Olarak Darbe Davranışının İncelenmesi, Trakya Üniversitesi Mühendislik Bilimleri Dergisi, 22(2), 87-95.
  • [22] Proa, Paula & Mendoza-Suarez, Guillermo & Drew, Robin. (2012). Effect of TiH 2 particle size distribution on aluminum foaming using the powder metallurgy method. Journal of Materials Science - J MATER SCI. 47. 10.1007/s10853-011-5820-1.
  • [23] A. Ma, N. Saito, M. Takagi, Y. Nishida, H. Iwata, Mater. Sci. Eng. A 395 (2005) 70–76.
  • [24] A. Ma, K. Suzuki, Y. Nishida, N. Saito, I. Shigematsu, M. Takagi, H. Iwata, A. Watazu, T. Imura, Acta Mater. 53 (2005) 211–220.
  • [25] C.M. Cepeda-Jimenez, J.M. Garcia-Infanta, A.P. Zhilyaev, O.A. Ruano, F. Carreno, J. Alloys Compd. 509 (2011) 636–643.
  • [26] TÜRKER, M., (2009). Toz Metalurjisi Yöntemi İle Üretilen Alüminyum Esasli Metalik Köpükte Si İlavesinin Köpürmeye Etkisi. 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), 13-15 Mayıs 2009, Karabük, Türkiye (ss.1-6). Karabük, Türkiye
  • [27] Ismail Ozdemir, Ceren Gode, Hakan Yilmazer, Hasan Callioglu, The effect of extrusion and high-pressure torsion on the properties of Alumix-231, Materials Science and Engineering: A, Volume 532, 2012, Pages 573-578.
  • [28] Brook, R.J. (1991). Concise Encyclopedia of Advanced Ceramic Materials. Pergamon Press: Oxford.
  • [29] Yu, C.-J., H.H. Eifert, J. Banhart and J. Baumeister, "Metal foaming by a powder metallurgy method: Production, properties and applications". Materials Research Innovations, 181-188, (1998).
  • [30] Banhart, J., "Metallic foams: challenges and opportunities". Eurofoam, 13-20, (2000).
  • [31] Schaeffler, P., W. Rajner, D. Claar, T. Trendelenburg and H. Nishimura, "Production, properties, and applications of Alulight® closed-cell aluminum foams", Proceedings of the Fifth International Workshop on Advanced Manufacturing Technologies, 151-156, (2005).
  • [32] Babcsán, N., F.G. Moreno and J. Banhart, "Metal foams high temperature colloids: part II: in situ analysis of metal foams". Colloids and Surfaces A: Physicochemical and Engineering Aspects, 254-263, (2007).
  • [33] Uzun, A. and M. Turker, "The investigation of mechanical properties of B4C-reinforced AlSi7 foams". International Journal of Materials Research, 970-977, (2015).
  • [34] Yang, D., et al., "Effect of decomposition kinetics of titanium hydride on the Al alloy melt foaming process". Journal of Materials Science & Technology, 361-368, (2015).
  • [35] Turker, M., "Production of Ceramics Reinforced Al Foams by Powder Metallurgy Techniques", Materials Science Forum, 39-46, (2011).
  • [36] Sharma, S.S., S. Yadav, A. Joshi, A. Goyal and R. Khatri, "Application of metallic foam in vehicle structure: A review". Materials Today: Proceedings, 347-353, (2022).

Production And Characterization of Aluminum Based Silicon Nitride Reinforced Metallic Foam

Yıl 2025, Cilt: 13 Sayı: 3, 1019 - 1030, 30.09.2025
https://doi.org/10.29109/gujsc.1734891

Öz

Metallic foams are lightweight materials that contain up to 90% porosity in their structure. Due to their low density and high energy absorption capacity, they are used in various fields, particularly in the automotive, aerospace, and defense industries. In this study, the effects of silicon nitride (Si₃N₄) reinforcement at 0%, 2%, and 4% ratios on the macrostructure, microstructure, density, and compressive strength of Al-based metallic foams were investigated. Pre-alloyed Alumix 231 powder, Si₃N₄ powder, and titanium hydride (TiH₂) powder, used as a foaming agent, were utilized in the study. Following the mixing process, the powders were compacted through cold and hot pressing to produce preforms. These preforms were foamed within a constrained mold to obtain cube-shaped metallic foam samples with dimensions of 30x30x30 mm. Compression tests were conducted to evaluate the mechanical properties of the foam samples. The results indicated that there was no significant difference in the compressive strength of the samples reinforced with varying amounts of silicon nitride.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1919B012318446

Teşekkür

We would like to express our gratitude to TÜBİTAK for supporting and contributing to our study within the scope of the '2209-A Research Project Support Program for Undergraduate Students'.

Kaynakça

  • [1] Şenel, C. M., Gürbüz, M., Koç, E. 2015. “Grafen Takviyeli Alüminyum Matrisli Yeni Nesil Kompozitler,” Mühendis ve Makina, cilt 56, sayı 669, s. 36-47.
  • [2] Rosso M. 2006, Ceramic and metal matrix composites: Routes and properties. Journal of Materials Processing Technology, 175 (364-375), (2006).
  • [3] Mahajan G.V., Aher V.S. Composite material: A review over current development and automotive application, International Journal of Scientific and Research Publications, 2 (1-5), (2012).
  • [4] Babalola P.O., Bolu C.A., et all. Development of aluminium matrix composites: A review, Journal of Engineering and Technology Research, l(1-11), (2014).
  • [5] Sahu P.S., Banchhor R. Effect of different reinforcement on mechanical properties of aluminium metal matrix composites, Res. J. Engineering Sci., 6 (39-45), (2017).
  • [6] Mattli M.R., Matli R.R et all. Structural and mechanical properties of amorphous Si3N4 nanoparticles reinforced Al matrix composites prepared by microwave sintering. Ceramics, 2 (126-134), (2019).
  • [7] Bedir F. Characteristic properties of Al-Cu-SiCp and Al-Cu-B4Cp composites produced by hot pressing method under nitrogen atmosphere, Materials and Design, 28(1238-1244), (2007).
  • [8] Ramnath B.V., Elanchezhian C. Alumınıum metal matrıx composıtes - A revıew, Advanced Materials Science, 38(55-60), (2014).
  • [9] Attar S., Nagaral M., et all. A review on particulate reinforced aluminum metal matrix composites, Journal of Emerging Technologies and Innovative Research, 2(225-229), (2015).
  • [10] Ervina Efzan M.N., Siti Syazwani N., and Abdullah M.M.A.B. Fabrication method of aluminum matrix composite (Amcs): A review, Key Engineering Materials, 700(02-110), (2016).
  • [11] Thirumoorthy A, Arjunan T.V., Senthil Kumar K.L. Latest research development in aluminum matrix with particulate reinforcement composites – A review, Materials Today: Proceedings 5(1657–1665), (2018).
  • [12] Manohar G., Dey A., Pandey K.M. and Maity S.R. Fabrication of metal matrix composites by powder metallurgy: A review, International Conference on Electrical, Electronics, Materials and Applied Science, 020041(1-8), (2019).
  • [13] Gökmen, U. Et Al. 2023. Microstructural and Radioactive Shielding Analyses of Alumix-231 and Alumix-231 Reinforced with B4C/SiC/Al2O3 Particles Produced through Hot Pressing. ACS OMEGA, vol.8, no.39 , 35755-35767.
  • [14] Akbulut, A., Tatlı, Z., Çalışkan, F. 2009. “Si3N4 Seramiklerinin Al2O3, MgO Katkıları Kullanılarak Basınçsız Sinterlenmesi”, 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Türkiye.
  • [15] Kumar, N. M., Kumaran, S.S., Kumaraswamidhas, L. A. 2015. “An Investigation of Mechanical Properties and Corrosion Resistance of Al2618 Alloy Reinforced with Si3N4, AlN and ZrB2 Composites”, Journal of Alloys and Compounds, vol. 652, p. 244-249.
  • [16] H. Arik, H., "Effect of Mechanical Alloying Process on Mechanical Properties of a-Si3N4 Reinforced Aluminum-Based Composite Materials", Materials and Design, vol.29, pp.1856-1861, 2008.
  • [17] Kumar, N. M., Kumaran, S. S., Kumaraswamidhas, L. A. 2016. “Aerospace Application on Al2618 with Reinforced-Si3N4, AlN and ZrB2 in-situ Composites”, Journal of Alloys and Compounds, vol. 672, p. 238-250.
  • [18] P. Sharma, S. Sharma, D. Khanduja, "Production and Some Properties of Si3N4 Reinforced Aluminium Alloy Composites", Journal of Asian Ceramic Societies, vol.3, pp.352-359, 2015.
  • [19] Ashby, M.F., A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson and H.N.G. Wadley, Metal Foams: A Design Guide, Butterworth Heineman, 2000.
  • [20] Altenpohl, D. G. 1980. Present Structure and Future Trends in Key Materials Industries.Materials in World Perspective: Assessment of Resources, Technologies and Trends forKey Materials Industries, Springer Berlin Heidelberg, Berlin, Heidelberg, Heidelberg p.21–126.
  • [21] Özen, M., Taşkın, N. Ü. (2021). Alüminyum Kompozit Köpük Malzemelerde Takviye Oranına Bağlı Olarak Darbe Davranışının İncelenmesi, Trakya Üniversitesi Mühendislik Bilimleri Dergisi, 22(2), 87-95.
  • [22] Proa, Paula & Mendoza-Suarez, Guillermo & Drew, Robin. (2012). Effect of TiH 2 particle size distribution on aluminum foaming using the powder metallurgy method. Journal of Materials Science - J MATER SCI. 47. 10.1007/s10853-011-5820-1.
  • [23] A. Ma, N. Saito, M. Takagi, Y. Nishida, H. Iwata, Mater. Sci. Eng. A 395 (2005) 70–76.
  • [24] A. Ma, K. Suzuki, Y. Nishida, N. Saito, I. Shigematsu, M. Takagi, H. Iwata, A. Watazu, T. Imura, Acta Mater. 53 (2005) 211–220.
  • [25] C.M. Cepeda-Jimenez, J.M. Garcia-Infanta, A.P. Zhilyaev, O.A. Ruano, F. Carreno, J. Alloys Compd. 509 (2011) 636–643.
  • [26] TÜRKER, M., (2009). Toz Metalurjisi Yöntemi İle Üretilen Alüminyum Esasli Metalik Köpükte Si İlavesinin Köpürmeye Etkisi. 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), 13-15 Mayıs 2009, Karabük, Türkiye (ss.1-6). Karabük, Türkiye
  • [27] Ismail Ozdemir, Ceren Gode, Hakan Yilmazer, Hasan Callioglu, The effect of extrusion and high-pressure torsion on the properties of Alumix-231, Materials Science and Engineering: A, Volume 532, 2012, Pages 573-578.
  • [28] Brook, R.J. (1991). Concise Encyclopedia of Advanced Ceramic Materials. Pergamon Press: Oxford.
  • [29] Yu, C.-J., H.H. Eifert, J. Banhart and J. Baumeister, "Metal foaming by a powder metallurgy method: Production, properties and applications". Materials Research Innovations, 181-188, (1998).
  • [30] Banhart, J., "Metallic foams: challenges and opportunities". Eurofoam, 13-20, (2000).
  • [31] Schaeffler, P., W. Rajner, D. Claar, T. Trendelenburg and H. Nishimura, "Production, properties, and applications of Alulight® closed-cell aluminum foams", Proceedings of the Fifth International Workshop on Advanced Manufacturing Technologies, 151-156, (2005).
  • [32] Babcsán, N., F.G. Moreno and J. Banhart, "Metal foams high temperature colloids: part II: in situ analysis of metal foams". Colloids and Surfaces A: Physicochemical and Engineering Aspects, 254-263, (2007).
  • [33] Uzun, A. and M. Turker, "The investigation of mechanical properties of B4C-reinforced AlSi7 foams". International Journal of Materials Research, 970-977, (2015).
  • [34] Yang, D., et al., "Effect of decomposition kinetics of titanium hydride on the Al alloy melt foaming process". Journal of Materials Science & Technology, 361-368, (2015).
  • [35] Turker, M., "Production of Ceramics Reinforced Al Foams by Powder Metallurgy Techniques", Materials Science Forum, 39-46, (2011).
  • [36] Sharma, S.S., S. Yadav, A. Joshi, A. Goyal and R. Khatri, "Application of metallic foam in vehicle structure: A review". Materials Today: Proceedings, 347-353, (2022).
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler, Toz Metalurjisi
Bölüm Tasarım ve Teknoloji
Yazarlar

İbrahim Doğan 0009-0006-6411-5140

Elif Işık 0009-0009-9296-0650

Mehmet Türker 0000-0001-7028-0587

Proje Numarası 1919B012318446
Erken Görünüm Tarihi 7 Ağustos 2025
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 5 Temmuz 2025
Kabul Tarihi 25 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 3

Kaynak Göster

APA Doğan, İ., Işık, E., & Türker, M. (2025). Alüminyum Matrisli Silisyum Nitrür Takviyeli Metalik Köpük Üretimi ve Karakterizasyonu. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 13(3), 1019-1030. https://doi.org/10.29109/gujsc.1734891

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526