Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Thermal Comfort and Optimum Supply Water Temperature in the Double Layered Thermally Activated Building System

Yıl 2025, Cilt: 13 Sayı: 3, 1315 - 1330, 30.09.2025
https://doi.org/10.29109/gujsc.1739629

Öz

The adoption of low-temperature heating systems in buildings has become increasingly popular to reduce energy consumption and enhance energy efficiency. In our previous study, a novel hydronic radiant heating system integrating both Underfloor Heating and Thermally Activated Building Systems (TABS) on the same floor was developed. The optimization process was based on thermal comfort criteria defined in ASHRAE 55 and ISO 7730, using floor surface temperatures obtained via FLUENT/ANSYS simulations. The Generalized Reduced Gradient (GRG) algorithm was employed, with Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfaction (PPD) indicators to assess thermal comfort. Present study aims to optimize the supply water temperature for the "Double Layered Thermally Activated Building System" (DLTS), ensuring thermal comfort and energy efficiency. Results indicated that for thermal neutrality, the optimum supply water temperature was 26.66°C, and the optimum surface temperature was 23.60°C. The DLTS system met the comfort criteria with PPD values below 12.14 for class C, demonstrating high user satisfaction. This research highlights the potential of DLTS to improve both energy efficiency and thermal comfort in buildings, offering valuable insights for future building system designs.

Kaynakça

  • [1] Yıldız, C. 2024. Binalarda Enerji Verimliliğinde Son Gelişmeler: Türkiye Örneği. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 12(1), 176-213.
  • [2] Dino, İ. G. 2017. Binalarda Güneş Kontrol Yöntemlerinin Optimizasyon Temelli Performans Değerlendirilmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5(3), 71-87.
  • [3] Gündoğdu, E., Arslan, H. D. 2020. Mimaride Enerji Etkin Cephe Ve Biyomimikri. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8(4), 922-935.
  • [4] Kalz, D.E., 2009. Heating and Cooling Concepts Employing Environmental Energy and Thermo-Active Building Systems for Low-Energy Buildings System Analysis and Optimization, Karlsruhe University Faculty of, PhD Thesis, Freiburg, 199 p.
  • [5] Olesen, B. W., Liedelt, D. 2001. Cooling and heating of buildings by activating their thermal mass with embedded hydronic pipe systems. Proceedings of the ASHRAE-CIBSE, Dublin, Ireland, 3-4.
  • [6] Olesen, B. W., Dossi, F. C. 2004. Operation and Control of Activated Slab Heating and Cooling Systems. Abstract from Procedings of CIB World Buildings Congress 2004, Toronto, Canada.
  • [7] Olesen, B.W., Dossi, F.C., 2005. Neue erkenntnisse über regelung und betrieb für die betonkernaktivierung teil 1. HLH, 56 (1): 29-34.
  • [8] Krarti, M., Ihm, P., 2005. Optimal control strategies for heated radiant floor systems, ASHRAE Transaction, 111(1): 535-546.
  • [9] Leigh, S.B., 1991. An experimental study of the control of radiant floor heating systems: Proportional flux modulation versus outdoor with indoor temperature offset, ASHRAE Transaction, 97(2): 800-808.
  • [10] Leigh, S.B., MacCluer, C.R., 1994. A comparative study of proportional flux modulation and various types of temperature modulation approaches for radiant floor heating system control, ASHRAE Transaction, 100(1): 1040-1053.
  • [11] Simmonds, P., 1994. Control strategies for combined heating and cooling radiant systems, ASHRAE Transaction, 100(1): 1031-1039.
  • [12] Baumgartner, T., Brühwiler, D., 2003. Tabs für bürohauten, Gebäudetechnik, 3: 24–29.
  • [13] Nüβle, F., 2004. Randstreifen dynamisieren betonkerntemperierung, HLH, 55 (8): 22-26.
  • [14] Burkard, T., 2004. Die nutzungsübergabe von systemen zur bauteilaktivierung, HLH, 55 (10): 49-51.
  • [15] Zaheer-Uddin, M., Zhang, Z.L., Cho, S.H., 2002. Augmented control strategies for radiant floor heating systems, International Journal of Energy Research, 26(1): 79-92.
  • [16] Athienitis, A.K., Charron, R., 2006. Design and optimization of net zero energy solar homes, ASHRAE Transaction, 112(2): 285-295.
  • [17] Tödtli, J., Gwerder M., Renggli, F., Gütensperger, W., Lehman, B., Dorer, V., Haas, A., Hildebrandt, K., 2008. Regelung und Steuerung von Thermoaktiven Bauteilsystemen, 15. Schweizerisches Status Seminar Energie und Umweltforschung im Bauwesen, pp 171-179. September 2008, Zurich.
  • [18] Gwerder, M., Tödtli, J., Lehmann, B., Dorer, V., Güntensperger, W., & Renggli, F., 2009. Control of thermally activated building systems (TABS) in intermittent operation with pulse width modulation. Applied Energy, 86(9): 1606-1616
  • [19] Sourbron, M., Helsen, L. 2013. Slow thermally activated building system and fast air handling unit join forces through the use of model based predictive control. In Proceedings of the CLIMA 2013 Congress, Prague, Czech Republic (pp. 16-19).
  • [20] Schmelas, M., Feldmann, T., Bollin, E. 2014. Adaptive and predictive control of thermally activated building systems. In Proc. ASHRAE/IBPSA-USAInternational Building Performance Simulation Conference (pp. 72-79).
  • [21] Qu, S., Su, S., Li, H., Hu, W., 2019. Optimized control of the supply water temperature in the thermally activated building system for cold climate in China. Sustainable Cities and Society, 51: 101742.
  • [22] Michalak, P., 2021. Selected Aspects of Indoor Climate in a Passive Office Building with a Thermally Activated Building System: A Case Study from Poland. Energies, 14(4): 860.
  • [23] Stoffel, P., Maier, L., Kümpel, A., Schreiber, T., Müller, D., 2023. Evaluation of advanced control strategies for building energy systems. Energy and Buildings, 280: 112709.
  • [24] Liu, D., Yang, X., Guan, W., Tian, Z., Zong, Y., Tang, R. 2023. Model predictive control for heat flexibility activation of the Thermally Activated Building System. In Building Simulation Conference Proceedings, 18: 3284-3288.
  • [25] ASHRAE, ANSI/ASHRAE Standard 55-2013, Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. Atlanta, 2013.
  • [26] ISO, ISO 7730-2005, Ergonomics of the thermal environment-analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Standard Organization. Geneva, 2005.
  • [27] Calisir, O., Ozturk, M., Genc, G., 2021. Investigation Of Thermal Performance Of Double Layered Thermally Activated Building System In Heating Mode. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.
  • [28] ANSYS “ANSYS FLUENT (V18.2),” Ansys Inc., Canonsburg, PA, 2017.
  • [29] EN 1264-2: 2008. Water Based Surface Embedded Heating and Cooling Systems – Part 2: Floor heating: Prove methods for the determination of the thermal output of floor heating systems using calculation and test methods.
  • [30] El Mouatasim, Abdelkrim, 2010. Two-phase generalized reduced gradient method for constrained global optimization. Journal of Applied Mathematics, 2010: 976529.
  • [31] Hashemi, S.H., Mousavi Dehghani, S.A., Samimi, S.E. et al., 2020. Performance comparison of GRG algorithm with evolutionary algorithms in an aqueous electrolyte system. Modeling Earth Systems and Environment.
  • [32] Faluyi, F., and C. Arum, 2012. Design optimization of plate girder using generalized reduced gradient and constrained artificial bee colony algorithms. International Journal of Emerging Technology and Advanced Engineering, 2(7), 304-312.
  • [33] Orosa, J.A. and Oliveira, A.C. 2012. Passive methods as a solution for improving indoor environments. 2012: Springer Science & Business Media.

Investigation of Thermal Comfort and Optimum Supply Water Temperature in the Double Layered Thermally Activated Building System

Yıl 2025, Cilt: 13 Sayı: 3, 1315 - 1330, 30.09.2025
https://doi.org/10.29109/gujsc.1739629

Öz

The adoption of low-temperature heating systems in buildings has become increasingly popular to reduce energy consumption and enhance energy efficiency. In our previous study, a novel hydronic radiant heating system integrating both Underfloor Heating and Thermally Activated Building Systems (TABS) on the same floor was developed. The optimization process was based on thermal comfort criteria defined in ASHRAE 55 and ISO 7730, using floor surface temperatures obtained via FLUENT/ANSYS simulations. The Generalized Reduced Gradient (GRG) algorithm was employed, with Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfaction (PPD) indicators to assess thermal comfort. Present study aims to optimize the supply water temperature for the "Double Layered Thermally Activated Building System" (DLTS), ensuring thermal comfort and energy efficiency. Results indicated that for thermal neutrality, the optimum supply water temperature was 26.66°C, and the optimum surface temperature was 23.60°C. The DLTS system met the comfort criteria with PPD values below 12.14 for class C, demonstrating high user satisfaction. This research highlights the potential of DLTS to improve both energy efficiency and thermal comfort in buildings, offering valuable insights for future building system designs.

Kaynakça

  • [1] Yıldız, C. 2024. Binalarda Enerji Verimliliğinde Son Gelişmeler: Türkiye Örneği. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 12(1), 176-213.
  • [2] Dino, İ. G. 2017. Binalarda Güneş Kontrol Yöntemlerinin Optimizasyon Temelli Performans Değerlendirilmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5(3), 71-87.
  • [3] Gündoğdu, E., Arslan, H. D. 2020. Mimaride Enerji Etkin Cephe Ve Biyomimikri. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8(4), 922-935.
  • [4] Kalz, D.E., 2009. Heating and Cooling Concepts Employing Environmental Energy and Thermo-Active Building Systems for Low-Energy Buildings System Analysis and Optimization, Karlsruhe University Faculty of, PhD Thesis, Freiburg, 199 p.
  • [5] Olesen, B. W., Liedelt, D. 2001. Cooling and heating of buildings by activating their thermal mass with embedded hydronic pipe systems. Proceedings of the ASHRAE-CIBSE, Dublin, Ireland, 3-4.
  • [6] Olesen, B. W., Dossi, F. C. 2004. Operation and Control of Activated Slab Heating and Cooling Systems. Abstract from Procedings of CIB World Buildings Congress 2004, Toronto, Canada.
  • [7] Olesen, B.W., Dossi, F.C., 2005. Neue erkenntnisse über regelung und betrieb für die betonkernaktivierung teil 1. HLH, 56 (1): 29-34.
  • [8] Krarti, M., Ihm, P., 2005. Optimal control strategies for heated radiant floor systems, ASHRAE Transaction, 111(1): 535-546.
  • [9] Leigh, S.B., 1991. An experimental study of the control of radiant floor heating systems: Proportional flux modulation versus outdoor with indoor temperature offset, ASHRAE Transaction, 97(2): 800-808.
  • [10] Leigh, S.B., MacCluer, C.R., 1994. A comparative study of proportional flux modulation and various types of temperature modulation approaches for radiant floor heating system control, ASHRAE Transaction, 100(1): 1040-1053.
  • [11] Simmonds, P., 1994. Control strategies for combined heating and cooling radiant systems, ASHRAE Transaction, 100(1): 1031-1039.
  • [12] Baumgartner, T., Brühwiler, D., 2003. Tabs für bürohauten, Gebäudetechnik, 3: 24–29.
  • [13] Nüβle, F., 2004. Randstreifen dynamisieren betonkerntemperierung, HLH, 55 (8): 22-26.
  • [14] Burkard, T., 2004. Die nutzungsübergabe von systemen zur bauteilaktivierung, HLH, 55 (10): 49-51.
  • [15] Zaheer-Uddin, M., Zhang, Z.L., Cho, S.H., 2002. Augmented control strategies for radiant floor heating systems, International Journal of Energy Research, 26(1): 79-92.
  • [16] Athienitis, A.K., Charron, R., 2006. Design and optimization of net zero energy solar homes, ASHRAE Transaction, 112(2): 285-295.
  • [17] Tödtli, J., Gwerder M., Renggli, F., Gütensperger, W., Lehman, B., Dorer, V., Haas, A., Hildebrandt, K., 2008. Regelung und Steuerung von Thermoaktiven Bauteilsystemen, 15. Schweizerisches Status Seminar Energie und Umweltforschung im Bauwesen, pp 171-179. September 2008, Zurich.
  • [18] Gwerder, M., Tödtli, J., Lehmann, B., Dorer, V., Güntensperger, W., & Renggli, F., 2009. Control of thermally activated building systems (TABS) in intermittent operation with pulse width modulation. Applied Energy, 86(9): 1606-1616
  • [19] Sourbron, M., Helsen, L. 2013. Slow thermally activated building system and fast air handling unit join forces through the use of model based predictive control. In Proceedings of the CLIMA 2013 Congress, Prague, Czech Republic (pp. 16-19).
  • [20] Schmelas, M., Feldmann, T., Bollin, E. 2014. Adaptive and predictive control of thermally activated building systems. In Proc. ASHRAE/IBPSA-USAInternational Building Performance Simulation Conference (pp. 72-79).
  • [21] Qu, S., Su, S., Li, H., Hu, W., 2019. Optimized control of the supply water temperature in the thermally activated building system for cold climate in China. Sustainable Cities and Society, 51: 101742.
  • [22] Michalak, P., 2021. Selected Aspects of Indoor Climate in a Passive Office Building with a Thermally Activated Building System: A Case Study from Poland. Energies, 14(4): 860.
  • [23] Stoffel, P., Maier, L., Kümpel, A., Schreiber, T., Müller, D., 2023. Evaluation of advanced control strategies for building energy systems. Energy and Buildings, 280: 112709.
  • [24] Liu, D., Yang, X., Guan, W., Tian, Z., Zong, Y., Tang, R. 2023. Model predictive control for heat flexibility activation of the Thermally Activated Building System. In Building Simulation Conference Proceedings, 18: 3284-3288.
  • [25] ASHRAE, ANSI/ASHRAE Standard 55-2013, Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. Atlanta, 2013.
  • [26] ISO, ISO 7730-2005, Ergonomics of the thermal environment-analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Standard Organization. Geneva, 2005.
  • [27] Calisir, O., Ozturk, M., Genc, G., 2021. Investigation Of Thermal Performance Of Double Layered Thermally Activated Building System In Heating Mode. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.
  • [28] ANSYS “ANSYS FLUENT (V18.2),” Ansys Inc., Canonsburg, PA, 2017.
  • [29] EN 1264-2: 2008. Water Based Surface Embedded Heating and Cooling Systems – Part 2: Floor heating: Prove methods for the determination of the thermal output of floor heating systems using calculation and test methods.
  • [30] El Mouatasim, Abdelkrim, 2010. Two-phase generalized reduced gradient method for constrained global optimization. Journal of Applied Mathematics, 2010: 976529.
  • [31] Hashemi, S.H., Mousavi Dehghani, S.A., Samimi, S.E. et al., 2020. Performance comparison of GRG algorithm with evolutionary algorithms in an aqueous electrolyte system. Modeling Earth Systems and Environment.
  • [32] Faluyi, F., and C. Arum, 2012. Design optimization of plate girder using generalized reduced gradient and constrained artificial bee colony algorithms. International Journal of Emerging Technology and Advanced Engineering, 2(7), 304-312.
  • [33] Orosa, J.A. and Oliveira, A.C. 2012. Passive methods as a solution for improving indoor environments. 2012: Springer Science & Business Media.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji
Bölüm Tasarım ve Teknoloji
Yazarlar

Oguzhan Calisir 0000-0002-7430-3560

Müjdat Öztürk 0000-0003-1800-2234

Gamze Genç 0000-0002-1133-2161

Erken Görünüm Tarihi 29 Eylül 2025
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 16 Temmuz 2025
Kabul Tarihi 9 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 3

Kaynak Göster

APA Calisir, O., Öztürk, M., & Genç, G. (2025). Investigation of Thermal Comfort and Optimum Supply Water Temperature in the Double Layered Thermally Activated Building System. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 13(3), 1315-1330. https://doi.org/10.29109/gujsc.1739629

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526