Influence of Heating Media on Mechanical and Microstructural Properties of CP Titanium Alloy
Yıl 2025,
Cilt: 13 Sayı: 3, 1305 - 1314, 30.09.2025
Erdem Mermer
,
Nurdan Evcimen
,
Hanifi Çinici
Öz
Commercially pure titanium alloys are used as structural materials in aerospace industry. These alloys are mainly exposed to stress relief after forming operations. Heat treating of commercially pure (CP) titanium alloys are generally carried out in air, atmosphere-controlled and vacuum atmospheres. This study investigates the effect of heating media on mechanical and microstructural features of CP titanium alloys. The samples have been subjected to stress relief treatment by different heating media. The heating media are vacuum and atmosphere-controlled atmospheres. Discoloration has been observed in atmosphere-controlled heating media. The microstructure has not been influenced by heating media neither near the surface and at core. Although, discoloration has been detected, alpha case formation is not noticed. The samples heat-treated in vacuum atmosphere showed approximately 7 % higher tensile and yield strength whereas elongation % has not been changed. Fatigue test has been performed at 310, 350 and 370 MPa stress levels. The fatigue life has been decreased at all stress levels. When stress level is increased up to 375 MPa, fatigue life has been decreased nearly by 40 %. Impurity content of samples has been examined within the scope of hydrogen and oxygen content. Oxygen and hydrogen contents have not been changed so much in vacuum heat-treated samples whereas oxygen content has been increased by 50 ppm and hydrogen content by 20 ppm. Increment in hydrogen content decreased mechanical properties.
Kaynakça
-
[1] Z. Shi, Z. Liang, Z. Huang, A. He, S. Qiao, A. Tong, Y. Zhang, Y. Luo, M. Wang, J. He, B. Wang, J. Wang, T. Ye, J. Qian, C. Xu, F. Chen, S. Sun, K. Wang, W. Xu, Revolutionizing fiber materials for space: Multi-scale interface engineering unlocks new aerospace frontiers, Mater. Today Com. 88 (2025) 643-704. https://doi.org/10.1016/j.mattod.2025.06.010.
-
[2] R. Soni, R. Verma, R. Kumar Garg, V. Sharma, A critical review of recent advances in the aerospace materials, Mater. Today Proc. 113 (2024) 180–184. https://doi.org/10.1016/j.matpr.2023.08.108.
-
[3] H. Ada, A.Q.J. El Rubaye, E. Asikuzun Tokeser, A. Mavi, Y. Kaplan, S. Aksöz, Coating of Ti6Al4V alloys by physical vapor deposition method and micro-scratch and corrosion test investigations of coated samples. Journal of Advanced Applied Sciences, 2(1) (2023),36-45.https://doi.org/10.29329/jaasci.2023.562.05.
-
[4] S.Aksöz, Ü.Demir, H. Ada, .Gökmeşe, Bülent Bostan, NiTi Şekil Bellekli Alaşım Tozlarına Mekanik Alaşımlama Yöntemi Kullanılarak Elementel Ni Ve Ti Tozlarının İlavesinin Mikroyapısal İncelenmesı. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5(1), (2017) 99-106. https://doi.org/10.29109/http-gujsc-gazi-edu-tr.303418.
-
[5] A.P.B.T. Mouritz, Titanium alloys for aerospace structures and engines, Introd. to Aerosp. Mater., Woodhead Publishing, 2012: pp. 202–223. https://doi.org/10.1533/9780857095152.202.
-
[6] M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Titanium Alloys for Aerospace Applications, Adv. Eng. Mater. 5 (2003) 419–427. https://doi.org/10.1002/adem.200310095.
-
[7] G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys, Mater. Sci. Eng. A 243 (1998) 32–45. https://doi.org/10.1016/S0921-5093(97)00778-8.
-
[8] W.J. Evans, Optimising mechanical properties in alpha+beta titanium alloys, Mater. Sci. Eng. A 243 (1998) 89–96. https://doi.org/10.1016/S0921-5093(97)00784-3.
-
[9] W.J. Kim, S.J. Yoo, J.B. Lee, Microstructure and mechanical properties of pure Ti processed by high-ratio differential speed rolling at room temperature, Scr. Mater. 62 (2010) 451–454. https://doi.org/10.1016/j.scriptamat.2009.12.008.
-
[10] AMS 2801, Heat Treatment of Titanium Alloy Parts, 2024.
-
[11] F.H. Froes, Titanium: Physical Metallurgy, Processing, and Applications, ASM International, 2015. https://doi.org/10.31399/asm.tb.tpmpa.9781627083188.
-
[12] Y. Xiong, P. Karamched, C.-T. Nguyen, D.M. Collins, C.M. Magazzeni, E. Tarleton, A.J. Wilkinson, Cold creep of titanium: Analysis of stress relaxation using synchrotron diffraction and crystal plasticity simulations, Acta Mater. 199 (2020) 561–577. https://doi.org/10.1016/j.actamat.2020.08.010.
-
[13] P.J. Withers, Residual stress and its role in failure, Reports Prog. Phys. 70 (2007) 2211. https://doi.org/10.1088/0034-4885/70/12/R04.
-
[14] G. Lütjering, J.C. Williams, Commercially Pure (CP) Titanium and Alpha Alloys, Engineering materials and processes, Springer, Heidelberg, 2003: 149–175. https://doi.org/10.1007/978-3-540-71398-2_4.
-
[15] C.L Briant, Z.F Wang, N Chollocoop, Hydrogen embrittlement of commercial purity titanium, Corrosion Science, Volue 44, Issue 8, 2002, Pages 1875-1888, https://doi.org/10.1016/S0010938X(01)00159-7.
-
[16] R. Elshaer, K. Ibrahim, A. Barakat, R. Reda, Effect of Heat Treatment Processes on Microstructure and Mechanical Behavior of TC21 Titanium Alloy, Open J. Met. 07 (2017) 39–57.
https://doi.org/10.4236/ojmetal.2017.73004.
-
[17] R.S. Uwanyuze, J.E. Kanyo, S.F. Myrick, S. Schafföner, A review on alpha case formation and modeling of mass transfer during investment casting of titanium alloys, J. Alloys Compd. 865 (2021) 158558. https://doi.org/10.1016/j.jallcom.2020.158558
-
[18] Q. Gaillard, F. Steinhilber, A. Larguier, X. Boulnat, J.-Y. Buffiere, G. Martin, S. Dancette, S. Cazottes, R. Dendievel, C. Desrayaud, Alpha-case promotes fatigue cracks initiation from the surface in heat treated Ti-6Al-4V fabricated by Laser Powder Bed Fusion, Int. J. Fatigue 190 (2025) 108621. https://doi.org/10.1016/j.ijfatigue.2024.108621.
-
[19] J.L. Milner, F. Abu-Farha, C. Bunget, T. Kurfess, V.H. Hammond, Grain refinement and mechanical properties of CP-Ti processed by warm accumulative roll bonding, Mater. Sci. Eng. A 561 (2013) 109–117. https://doi.org/10.1016/j.msea.2012.10.081.
-
[20] I. Eipert, G. Sivaswamy, R. Bhattacharya, M. Amir, P. Blackwell, Improvement in Ductility in Commercially Pure Titanium Alloys by Stress Relaxation at Room Temperature, Key Eng. Mater. 611–612 (2014) 92–98. https://doi.org/10.4028/www.scientific.net/KEM.611-612.92.
-
[21] B.R. Sridhar, G. Devananda, K. Ramachandra, R. Bhat, Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834, J. Mater. Process. Technol. 139 (2003) 628–634. https://doi.org/10.1016/S0924-0136(03)00612-5.
-
[22] T. Ahmed, H.J. Rack, Phase transformations during cooling in α+β titanium alloys, Mater. Sci. Eng. A 243 (1998) 206–211. https://doi.org/10.1016/S0921-5093(97)00802-2.
-
[23] D. Mpumlwana, V. Msomi, C.J.S. Fourie, Effect of Heat Treatment on the Mechanical Properties of a 3 mm Commercially Pure Titanium Plate (CP-Ti Grade 2), J. Eng. 2021 (2021) 6646588. https://doi.org/10.1155/2021/6646588.
-
[24] C.H. Lee, S.-W. Choi, P.L. Narayana, T.A. Nguyet Nguyen, S.-T. Hong, J.H. Kim, N. Kang, J.-K. Hong, Effect of Electric Current Heat Treatment on Commercially Pure Titanium Sheets, Metals (Basel). 11 (2021). https://doi.org/10.3390/met11050783.
-
[25] L.D.K. Catherine, D.B.A Hamid, The effect of heat treatment on the tensile strength and ductility of pure titanium grade 2, IOP Conf. Ser. Mater. Sci. Eng. 429 (2018) 12014. https://doi.org/10.1088/1757-899X/429/1/012014.
-
[26] H.-K. Park, T.-W. Na, J.M. Park, Y. Kim, G.-H. Kim, B.S. Lee, H.G. Kim, Effect of cyclic heat treatment on commercially pure titanium part fabricated by electron beam additive manufacturing, J. Alloys Compd. 796 (2019) 300–306. https://doi.org/10.1016/j.jallcom.2019.04.335.
-
[27] N. Mguni, M.N. Mathabathe, M.B. Shongwe, A.S. Bolokang, Comparison study on the effect of oxygen, nitrogen and hydrogen absorption on phase transformation and mechanical properties of quenched CP Ti and Ti6Al4V alloy, Materials Chemistry and Physics, Volume 330, 2025, 130111, https://doi.org/10.1016/j.matchemphys.2024.130111
-
[28] J.S. An, M.J. Jo, A. R. Jo, M.S. Jeong, D.K. Kim, Y.H. Moon, S.K. Hwang, Fatigue behavior and microstructural evolution of CP-Ti under cryogenic low-cycle fatigue, Materials Characterization, 228 (2025), 115407, https://doi.org/10.1016/j.matchar.2025.115407.
-
[29] AMS 4901, Titanium Sheet, Strip, and Plate, Commercially Pure, Annealed, 70.0 ksi (485 MPa), 2025.
-
[30] P.A. Blenkinsop, High Temperature Titanium Alloys., 1 (1986) 189–208. https://doi.org/10.1201/9781420037678-7.
-
[31] R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mater. Sci. Eng. A 213 (1996) 103–114. https://doi.org/10.1016/0921-5093(96)10233-1.
-
[32] X. Shi, X. Wang, B. Chen, J. Umeda, A. Bahador, K. Kondoh, J. Shen, Precision control of oxygen content in CP-Ti for ultra-high strength through titanium oxide decomposition: An in-situ study, Materials & Design, Volume 227, 2023, 111797, https://doi.org/10.1016/j.matdes.2023.111797.
-
[33] N. E. Paton and J. C. Williams: in 'Hydrogen in metals', (ed. I. M. Bernstein and A. W. Thompson), 409-431; 1974, Metals Park, OH, ASM. https://doi.org/10.1016/0036-9748(75)90487-1
-
[34] S. Hosseini, M. Farajollahi, M. Ebrahimi, Residual stress, fatigue behavior, and mechanical properties of equal-channel angular pressed commercial pure titanium, Journal of Materials Research and Technology, 28 (2024), 3297-3305, https://doi.org/10.1016/j.jmrt.2023.12.265.
-
[35] J. L. Robinson and c. J. Beevers: in 'Titanium science and technology', (ed. R. I. Jaffee and H. M. Burte), Vol. 2, 1245-1256; 1973, New York, Plenum Press
-
[36] R.I. Jaffee, The physical metallurgy of titanium alloys, Prog. Met. Phys. 7 (1958) 65–163. https://doi.org/10.1016/0502-8205(58)90004-2.
-
[37] H. Luo, C. Dong, Z. Liu, M. Maha, X. li, Characterization of hydrogen charging of 2205 duplex stainless steel and its correlation with hydrogen-induced cracking, Mater. Corros. 64 (2013). https://doi.org/10.1002/maco.201106146.
Influence of Heating Media on Mechanical and Microstructural Properties of CP Titanium Alloy
Yıl 2025,
Cilt: 13 Sayı: 3, 1305 - 1314, 30.09.2025
Erdem Mermer
,
Nurdan Evcimen
,
Hanifi Çinici
Öz
Commercially pure titanium alloys are used as structural materials in aerospace industry. These alloys are mainly exposed to stress relief after forming operations. Heat treating of commercially pure (CP) titanium alloys are generally carried out in air, atmosphere-controlled and vacuum atmospheres. This study investigates the effect of heating media on mechanical and microstructural features of CP titanium alloys. The samples have been subjected to stress relief treatment by different heating media. The heating media are vacuum and atmosphere-controlled atmospheres. Discoloration has been observed in atmosphere-controlled heating media. The microstructure has not been influenced by heating media neither near the surface and at core. Although, discoloration has been detected, alpha case formation is not noticed. The samples heat-treated in vacuum atmosphere showed approximately 7 % higher tensile and yield strength whereas elongation % has not been changed. Fatigue test has been performed at 310, 350 and 370 MPa stress levels. The fatigue life has been decreased at all stress levels. When stress level is increased up to 375 MPa, fatigue life has been decreased nearly by 40 %. Impurity content of samples has been examined within the scope of hydrogen and oxygen content. Oxygen and hydrogen contents have not been changed so much in vacuum heat-treated samples whereas oxygen content has been increased by 50 ppm and hydrogen content by 20 ppm. Increment in hydrogen content decreased mechanical properties.
Kaynakça
-
[1] Z. Shi, Z. Liang, Z. Huang, A. He, S. Qiao, A. Tong, Y. Zhang, Y. Luo, M. Wang, J. He, B. Wang, J. Wang, T. Ye, J. Qian, C. Xu, F. Chen, S. Sun, K. Wang, W. Xu, Revolutionizing fiber materials for space: Multi-scale interface engineering unlocks new aerospace frontiers, Mater. Today Com. 88 (2025) 643-704. https://doi.org/10.1016/j.mattod.2025.06.010.
-
[2] R. Soni, R. Verma, R. Kumar Garg, V. Sharma, A critical review of recent advances in the aerospace materials, Mater. Today Proc. 113 (2024) 180–184. https://doi.org/10.1016/j.matpr.2023.08.108.
-
[3] H. Ada, A.Q.J. El Rubaye, E. Asikuzun Tokeser, A. Mavi, Y. Kaplan, S. Aksöz, Coating of Ti6Al4V alloys by physical vapor deposition method and micro-scratch and corrosion test investigations of coated samples. Journal of Advanced Applied Sciences, 2(1) (2023),36-45.https://doi.org/10.29329/jaasci.2023.562.05.
-
[4] S.Aksöz, Ü.Demir, H. Ada, .Gökmeşe, Bülent Bostan, NiTi Şekil Bellekli Alaşım Tozlarına Mekanik Alaşımlama Yöntemi Kullanılarak Elementel Ni Ve Ti Tozlarının İlavesinin Mikroyapısal İncelenmesı. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5(1), (2017) 99-106. https://doi.org/10.29109/http-gujsc-gazi-edu-tr.303418.
-
[5] A.P.B.T. Mouritz, Titanium alloys for aerospace structures and engines, Introd. to Aerosp. Mater., Woodhead Publishing, 2012: pp. 202–223. https://doi.org/10.1533/9780857095152.202.
-
[6] M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Titanium Alloys for Aerospace Applications, Adv. Eng. Mater. 5 (2003) 419–427. https://doi.org/10.1002/adem.200310095.
-
[7] G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys, Mater. Sci. Eng. A 243 (1998) 32–45. https://doi.org/10.1016/S0921-5093(97)00778-8.
-
[8] W.J. Evans, Optimising mechanical properties in alpha+beta titanium alloys, Mater. Sci. Eng. A 243 (1998) 89–96. https://doi.org/10.1016/S0921-5093(97)00784-3.
-
[9] W.J. Kim, S.J. Yoo, J.B. Lee, Microstructure and mechanical properties of pure Ti processed by high-ratio differential speed rolling at room temperature, Scr. Mater. 62 (2010) 451–454. https://doi.org/10.1016/j.scriptamat.2009.12.008.
-
[10] AMS 2801, Heat Treatment of Titanium Alloy Parts, 2024.
-
[11] F.H. Froes, Titanium: Physical Metallurgy, Processing, and Applications, ASM International, 2015. https://doi.org/10.31399/asm.tb.tpmpa.9781627083188.
-
[12] Y. Xiong, P. Karamched, C.-T. Nguyen, D.M. Collins, C.M. Magazzeni, E. Tarleton, A.J. Wilkinson, Cold creep of titanium: Analysis of stress relaxation using synchrotron diffraction and crystal plasticity simulations, Acta Mater. 199 (2020) 561–577. https://doi.org/10.1016/j.actamat.2020.08.010.
-
[13] P.J. Withers, Residual stress and its role in failure, Reports Prog. Phys. 70 (2007) 2211. https://doi.org/10.1088/0034-4885/70/12/R04.
-
[14] G. Lütjering, J.C. Williams, Commercially Pure (CP) Titanium and Alpha Alloys, Engineering materials and processes, Springer, Heidelberg, 2003: 149–175. https://doi.org/10.1007/978-3-540-71398-2_4.
-
[15] C.L Briant, Z.F Wang, N Chollocoop, Hydrogen embrittlement of commercial purity titanium, Corrosion Science, Volue 44, Issue 8, 2002, Pages 1875-1888, https://doi.org/10.1016/S0010938X(01)00159-7.
-
[16] R. Elshaer, K. Ibrahim, A. Barakat, R. Reda, Effect of Heat Treatment Processes on Microstructure and Mechanical Behavior of TC21 Titanium Alloy, Open J. Met. 07 (2017) 39–57.
https://doi.org/10.4236/ojmetal.2017.73004.
-
[17] R.S. Uwanyuze, J.E. Kanyo, S.F. Myrick, S. Schafföner, A review on alpha case formation and modeling of mass transfer during investment casting of titanium alloys, J. Alloys Compd. 865 (2021) 158558. https://doi.org/10.1016/j.jallcom.2020.158558
-
[18] Q. Gaillard, F. Steinhilber, A. Larguier, X. Boulnat, J.-Y. Buffiere, G. Martin, S. Dancette, S. Cazottes, R. Dendievel, C. Desrayaud, Alpha-case promotes fatigue cracks initiation from the surface in heat treated Ti-6Al-4V fabricated by Laser Powder Bed Fusion, Int. J. Fatigue 190 (2025) 108621. https://doi.org/10.1016/j.ijfatigue.2024.108621.
-
[19] J.L. Milner, F. Abu-Farha, C. Bunget, T. Kurfess, V.H. Hammond, Grain refinement and mechanical properties of CP-Ti processed by warm accumulative roll bonding, Mater. Sci. Eng. A 561 (2013) 109–117. https://doi.org/10.1016/j.msea.2012.10.081.
-
[20] I. Eipert, G. Sivaswamy, R. Bhattacharya, M. Amir, P. Blackwell, Improvement in Ductility in Commercially Pure Titanium Alloys by Stress Relaxation at Room Temperature, Key Eng. Mater. 611–612 (2014) 92–98. https://doi.org/10.4028/www.scientific.net/KEM.611-612.92.
-
[21] B.R. Sridhar, G. Devananda, K. Ramachandra, R. Bhat, Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834, J. Mater. Process. Technol. 139 (2003) 628–634. https://doi.org/10.1016/S0924-0136(03)00612-5.
-
[22] T. Ahmed, H.J. Rack, Phase transformations during cooling in α+β titanium alloys, Mater. Sci. Eng. A 243 (1998) 206–211. https://doi.org/10.1016/S0921-5093(97)00802-2.
-
[23] D. Mpumlwana, V. Msomi, C.J.S. Fourie, Effect of Heat Treatment on the Mechanical Properties of a 3 mm Commercially Pure Titanium Plate (CP-Ti Grade 2), J. Eng. 2021 (2021) 6646588. https://doi.org/10.1155/2021/6646588.
-
[24] C.H. Lee, S.-W. Choi, P.L. Narayana, T.A. Nguyet Nguyen, S.-T. Hong, J.H. Kim, N. Kang, J.-K. Hong, Effect of Electric Current Heat Treatment on Commercially Pure Titanium Sheets, Metals (Basel). 11 (2021). https://doi.org/10.3390/met11050783.
-
[25] L.D.K. Catherine, D.B.A Hamid, The effect of heat treatment on the tensile strength and ductility of pure titanium grade 2, IOP Conf. Ser. Mater. Sci. Eng. 429 (2018) 12014. https://doi.org/10.1088/1757-899X/429/1/012014.
-
[26] H.-K. Park, T.-W. Na, J.M. Park, Y. Kim, G.-H. Kim, B.S. Lee, H.G. Kim, Effect of cyclic heat treatment on commercially pure titanium part fabricated by electron beam additive manufacturing, J. Alloys Compd. 796 (2019) 300–306. https://doi.org/10.1016/j.jallcom.2019.04.335.
-
[27] N. Mguni, M.N. Mathabathe, M.B. Shongwe, A.S. Bolokang, Comparison study on the effect of oxygen, nitrogen and hydrogen absorption on phase transformation and mechanical properties of quenched CP Ti and Ti6Al4V alloy, Materials Chemistry and Physics, Volume 330, 2025, 130111, https://doi.org/10.1016/j.matchemphys.2024.130111
-
[28] J.S. An, M.J. Jo, A. R. Jo, M.S. Jeong, D.K. Kim, Y.H. Moon, S.K. Hwang, Fatigue behavior and microstructural evolution of CP-Ti under cryogenic low-cycle fatigue, Materials Characterization, 228 (2025), 115407, https://doi.org/10.1016/j.matchar.2025.115407.
-
[29] AMS 4901, Titanium Sheet, Strip, and Plate, Commercially Pure, Annealed, 70.0 ksi (485 MPa), 2025.
-
[30] P.A. Blenkinsop, High Temperature Titanium Alloys., 1 (1986) 189–208. https://doi.org/10.1201/9781420037678-7.
-
[31] R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mater. Sci. Eng. A 213 (1996) 103–114. https://doi.org/10.1016/0921-5093(96)10233-1.
-
[32] X. Shi, X. Wang, B. Chen, J. Umeda, A. Bahador, K. Kondoh, J. Shen, Precision control of oxygen content in CP-Ti for ultra-high strength through titanium oxide decomposition: An in-situ study, Materials & Design, Volume 227, 2023, 111797, https://doi.org/10.1016/j.matdes.2023.111797.
-
[33] N. E. Paton and J. C. Williams: in 'Hydrogen in metals', (ed. I. M. Bernstein and A. W. Thompson), 409-431; 1974, Metals Park, OH, ASM. https://doi.org/10.1016/0036-9748(75)90487-1
-
[34] S. Hosseini, M. Farajollahi, M. Ebrahimi, Residual stress, fatigue behavior, and mechanical properties of equal-channel angular pressed commercial pure titanium, Journal of Materials Research and Technology, 28 (2024), 3297-3305, https://doi.org/10.1016/j.jmrt.2023.12.265.
-
[35] J. L. Robinson and c. J. Beevers: in 'Titanium science and technology', (ed. R. I. Jaffee and H. M. Burte), Vol. 2, 1245-1256; 1973, New York, Plenum Press
-
[36] R.I. Jaffee, The physical metallurgy of titanium alloys, Prog. Met. Phys. 7 (1958) 65–163. https://doi.org/10.1016/0502-8205(58)90004-2.
-
[37] H. Luo, C. Dong, Z. Liu, M. Maha, X. li, Characterization of hydrogen charging of 2205 duplex stainless steel and its correlation with hydrogen-induced cracking, Mater. Corros. 64 (2013). https://doi.org/10.1002/maco.201106146.