Araştırma Makalesi
BibTex RIS Kaynak Göster

ScabAI: A Deep Learning-Based Mobile Application for Scabies Detection from Skin Images

Yıl 2025, Cilt: 13 Sayı: 4
https://doi.org/10.29109/gujsc.1601385

Öz

Scabies, a contagious skin disease caused by the Sarcoptes scabiei mite, remains a significant public health concern globally. This study aims to develop a mobile application, ScabAI, which uses a deep learning model based on Convolutional Neural Networks (CNNs) to detect scabies from skin images. The model was trained using a dataset of 500 images, divided equally between scabies and non-scabies cases, and achieved high performance metrics, including 96.7% accuracy, 96% sensitivity, 97.3% specificity, and a 96.5% F1 score. These results demonstrate the model’s reliability and effectiveness in detecting scabies, outperforming many existing models. The mobile application allows users to capture or upload images of suspected scabies lesions, providing rapid and accurate preliminary diagnoses. ScabAI offers a practical, user-friendly tool that can be beneficial for both healthcare providers and individuals, supporting early detection, timely treatment, and reducing the risk of disease transmission. This study underscores the potential of integrating artificial intelligence with mobile platforms for improved dermatological care, particularly in resource-limited settings. Future research should focus on expanding the dataset to enhance generalization and exploring additional AI techniques to refine detection accuracy. ScabAI not only contributes to AI-assisted dermatology but also serves as a scalable model for developing similar tools targeting other skin conditions. This innovative approach addresses both clinical needs and user accessibility, advancing healthcare outcomes and public health initiatives.

Kaynakça

  • [1] Y. Panahi, Z. Poursaleh, and M. Goldust, ‘The efficacy of topical and oral ivermectin in the treatment of human scabies’, Ann. Parasitol., vol. 61, no. 1, pp. 11–16, 2015.
  • [2] P. M. Swe, L. D. Christian, H. C. Lu, K. S. Sriprakash, and K. Fischer, ‘Complement inhibition by Sarcoptes scabiei protects Streptococcus pyogenes - An in vitro study to unravel the molecular mechanisms behind the poorly understood predilection of S. pyogenes to infect mite-induced skin lesions’, PLoS Negl. Trop. Dis., vol. 11, no. 3, p. e0005437, Mar. 2017, doi: 10.1371/journal.pntd.0005437.
  • [3] M. G. Özden et al., ‘An extraordinary outbreak of scabies in Turkey’, J. Eur. Acad. Dermatol. Venereol., vol. 34, no. 12, Dec. 2020, doi: 10.1111/jdv.16699.
  • [4] A. Ö. Porsuk and Ç. Cerit, ‘Status of Scabies Cases in COVID-19 Pandemic Days’, Iran. J. Parasitol., Sep. 2021, doi: 10.18502/ijpa.v16i3.7104.
  • [5] U. R. Hengge, B. J. Currie, G. Jäger, O. Lupi, and R. A. Schwartz, ‘Scabies: a ubiquitous neglected skin disease’, Lancet Infect. Dis., vol. 6, no. 12, pp. 769–779, Dec. 2006, doi: 10.1016/S1473-3099(06)70654-5.
  • [6] A. Strina et al., ‘Validation of epidemiological tools for eczema diagnosis in brazilian children: the isaac’s and uk working party’s criteria’, BMC Dermatol., vol. 10, no. 1, p. 11, Dec. 2010, doi: 10.1186/1471-5945-10-11.
  • [7] B. E. Rosenbaum et al., ‘Dermatology in Ghana: a retrospective review of skin disease at the Korle Bu Teaching Hospital Dermatology Clinic’, Pan Afr. Med. J., vol. 26, p. 125, 2017, doi: 10.11604/pamj.2017.26.125.10954.
  • [8] F. Jiang et al., ‘Artificial intelligence in healthcare: past, present and future’, Stroke Vasc. Neurol., vol. 2, no. 4, pp. 230–243, Dec. 2017, doi: 10.1136/svn-2017-000101.
  • [9] S. Chan, V. Reddy, B. Myers, Q. Thibodeaux, N. Brownstone, and W. Liao, ‘Machine Learning in Dermatology: Current Applications, Opportunities, and Limitations’, Dermatol. Ther., vol. 10, no. 3, pp. 365–386, Jun. 2020, doi: 10.1007/s13555-020-00372-0.
  • [10] S. İlkin, O. Aytar, T. H. Gençtürk, and S. Şahi̇n, ‘Dermoskopik Görüntülerde Lezyon Bölütleme İşlemlerinde K-ortalama Kümeleme Algoritmasının Kullanımı’, Gazi Üniversitesi Fen Bilim. Derg. Part C Tasar. Ve Teknol., vol. 8, no. 1, pp. 182–191, Mar. 2020, doi: 10.29109/gujsc.625378.
  • [11] R. Yasir, Md. A. Rahman, and N. Ahmed, ‘Dermatological disease detection using image processing and artificial neural network’, in 8th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh: IEEE, Dec. 2014, pp. 687–690. doi: 10.1109/ICECE.2014.7026918.
  • [12] K. S. Parikh, T. P. Shah, R. Kota, and R. Vora, ‘Diagnosing Common Skin Diseases using Soft Computing Techniques’, Int. J. Bio-Sci. Bio-Technol., vol. 7, no. 6, pp. 275–286, Dec. 2015, doi: 10.14257/ijbsbt.2015.7.6.28.
  • [13] M. Shamsul Arifin, M. Golam Kibria, A. Firoze, M. Ashraful Amini, and Hong Yan, ‘Dermatological disease diagnosis using color-skin images’, in 2012 International Conference on Machine Learning and Cybernetics, Xian, Shaanxi, China: IEEE, Jul. 2012, pp. 1675–1680. doi: 10.1109/ICMLC.2012.6359626.
  • [14] Department of Computer Science, Sunyani Technical University, Sunyani Ghana, S. Akyeramfo-Sam, A. Addo Philip, D. Yeboah, N. C. Nartey, and I. Kofi Nti, ‘A Web-Based Skin Disease Diagnosis Using Convolutional Neural Networks’, Int. J. Inf. Technol. Comput. Sci., vol. 11, no. 11, pp. 54–60, Nov. 2019, doi: 10.5815/ijitcs.2019.11.06.
  • [15] N. Akmalia, P. Sihombing, and Suherman, ‘Skin Diseases Classification Using Local Binary Pattern and Convolutional Neural Network’, in 2019 3rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), Medan, Indonesia: IEEE, Sep. 2019, pp. 168–173. doi: 10.1109/ELTICOM47379.2019.8943892.
  • [16] M. N. Bajwa et al., ‘Computer-Aided Diagnosis of Skin Diseases Using Deep Neural Networks’, Appl. Sci., vol. 10, no. 7, p. 2488, Apr. 2020, doi: 10.3390/app10072488.
  • [17] S. S. Mohammed and J. M. Al-Tuwaijari, ‘Skin Disease Classification System Based on Machine Learning Technique: A Survey’, IOP Conf. Ser. Mater. Sci. Eng., vol. 1076, no. 1, p. 012045, Feb. 2021, doi: 10.1088/1757-899X/1076/1/012045.
  • [18] M. Halder, H. Moh. Emrul Kabir, A. Mimi Rity, and A. Vowmik, ‘An automated detection of Scabies skin disease Using Image Processing and CNN’, in 2022 4th International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh: IEEE, Dec. 2022, pp. 1–6. doi: 10.1109/STI56238.2022.10103250.
  • [19] A. Dutta and A. Zisserman, ‘The VIA Annotation Software for Images, Audio and Video’, in Proceedings of the 27th ACM International Conference on Multimedia, Nice France: ACM, Oct. 2019, pp. 2276–2279. doi: 10.1145/3343031.3350535.
  • [20] M. Varlı and H. Yılmaz, ‘Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning’, J. Comput. Sci., vol. 67, p. 101943, Mar. 2023, doi: 10.1016/j.jocs.2023.101943.
  • [21] H. O. Ilhan, G. Serbes, and N. Aydin, ‘Decision and feature level fusion of deep features extracted from public COVID-19 data-sets’, Appl. Intell., vol. 52, no. 8, pp. 8551–8571, Jun. 2022, doi: 10.1007/s10489-021-02945-8.
  • [22] P. Purwono, A. Ma’arif, W. Rahmaniar, H. I. K. Fathurrahman, A. Z. K. Frisky, and Q. M. U. Haq, ‘Understanding of Convolutional Neural Network (CNN): A Review’, Int. J. Robot. Control Syst., vol. 2, no. 4, pp. 739–748, Jan. 2023, doi: 10.31763/ijrcs.v2i4.888.
  • [23] J. Liu and H. Zhao, ‘Application of convolution neural network in medical image processing’, Technol. Health Care, vol. 29, no. 2, pp. 407–417, Mar. 2021, doi: 10.3233/THC-202657.
  • [24] W. Yang, W. Luo, and Y. Zhang, ‘Classification of odontocete echolocation clicks using convolutional neural network’, J. Acoust. Soc. Am., vol. 147, no. 1, pp. 49–55, Jan. 2020, doi: 10.1121/10.0000514.
  • [25] X. Zhang, J. Li, W. Wu, F. Dong, and S. Wan, ‘Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Network’, Entropy, vol. 25, no. 5, p. 737, Apr. 2023, doi: 10.3390/e25050737.
  • [26] X. Wang and Z. Yang, ‘Research on Classification and Recognition of Object Image Based on Convolutional Neural Network’, IOP Conf. Ser. Mater. Sci. Eng., vol. 782, no. 4, p. 042062, Mar. 2020, doi: 10.1088/1757-899X/782/4/042062.
  • [27] H. Yılmaz, ‘Ai-Powered Healthcare Innovations: Rehabilitation, Education, And Early Diagnosis’, Sep. 2024, Serüven Yayınevi. doi: 10.5281/ZENODO.13885904.
  • [28] R. Kaur, H. GholamHosseini, R. Sinha, and M. Lindén, ‘Melanoma Classification Using a Novel Deep Convolutional Neural Network With Dermoscopic Images’, Sensors, vol. 22, no. 3, p. 1134, 2022, doi: 10.3390/s22031134.

ScabAI: Cilt Görüntülerinden Uyuz Tespiti için Derin Öğrenme Tabanlı Mobil Uygulama

Yıl 2025, Cilt: 13 Sayı: 4
https://doi.org/10.29109/gujsc.1601385

Öz

Uyuz hastalığı, Sarcoptes scabiei akarının neden olduğu bulaşıcı bir cilt hastalığı olup, dünya genelinde önemli bir halk sağlığı sorunu olmaya devam etmektedir. Bu çalışma, cilt görüntülerinden uyuz hastalığını tespit etmek amacıyla Derin Öğrenme tabanlı bir mobil uygulama olan ScabAI'yi geliştirmeyi amaçlamaktadır. Uygulamanın temelinde, Konvolüsyonel Sinir Ağları (CNNs) tabanlı bir derin öğrenme modeli bulunmaktadır. Model, 500 görüntüden oluşan bir veri seti üzerinde eğitilmiş; bu veri seti uyuz ve uyuz olmayan vakalar arasında eşit şekilde dağıtılmıştır. Model, %96,7 doğruluk, %96 duyarlılık, %97,3 özgüllük ve %96,5 F1 skoru gibi yüksek performans metrikleri elde etmiştir. Bu sonuçlar, modelin uyuz tespitindeki güvenilirliğini ve etkinliğini ortaya koymakta ve mevcut birçok modelin performansını aşmaktadır.
Mobil uygulama, kullanıcıların şüpheli uyuz lezyonlarının görüntülerini çekmesine veya yüklemesine olanak tanıyarak hızlı ve doğru bir ön tanı sağlamaktadır. ScabAI, erken teşhisi destekleyerek, zamanında tedaviye olanak tanıyan ve hastalık bulaşma riskini azaltan pratik ve kullanıcı dostu bir araç sunmaktadır. Bu çalışma, yapay zekanın mobil platformlarla entegre edilerek dermatolojik bakımda iyileştirmeler sağlama potansiyelini vurgulamaktadır; özellikle kaynakların sınırlı olduğu bölgelerde önemli bir çözüm sunmaktadır. Gelecekteki araştırmalar, genelleştirmeyi iyileştirmek için veri setinin genişletilmesine ve tespit doğruluğunu artırmak amacıyla ek yapay zeka tekniklerinin keşfine odaklanmalıdır. ScabAI, yalnızca yapay zeka destekli dermatolojiye katkı sağlamakla kalmayıp, diğer cilt hastalıklarını hedefleyen benzer araçların geliştirilmesi için ölçeklenebilir bir model işlevi görmektedir. Bu yenilikçi yaklaşım, hem klinik ihtiyaçları hem de kullanıcı erişilebilirliğini karşılayarak sağlık hizmetleri sonuçlarını ve halk sağlığı girişimlerini ileriye taşımaktadır.

Kaynakça

  • [1] Y. Panahi, Z. Poursaleh, and M. Goldust, ‘The efficacy of topical and oral ivermectin in the treatment of human scabies’, Ann. Parasitol., vol. 61, no. 1, pp. 11–16, 2015.
  • [2] P. M. Swe, L. D. Christian, H. C. Lu, K. S. Sriprakash, and K. Fischer, ‘Complement inhibition by Sarcoptes scabiei protects Streptococcus pyogenes - An in vitro study to unravel the molecular mechanisms behind the poorly understood predilection of S. pyogenes to infect mite-induced skin lesions’, PLoS Negl. Trop. Dis., vol. 11, no. 3, p. e0005437, Mar. 2017, doi: 10.1371/journal.pntd.0005437.
  • [3] M. G. Özden et al., ‘An extraordinary outbreak of scabies in Turkey’, J. Eur. Acad. Dermatol. Venereol., vol. 34, no. 12, Dec. 2020, doi: 10.1111/jdv.16699.
  • [4] A. Ö. Porsuk and Ç. Cerit, ‘Status of Scabies Cases in COVID-19 Pandemic Days’, Iran. J. Parasitol., Sep. 2021, doi: 10.18502/ijpa.v16i3.7104.
  • [5] U. R. Hengge, B. J. Currie, G. Jäger, O. Lupi, and R. A. Schwartz, ‘Scabies: a ubiquitous neglected skin disease’, Lancet Infect. Dis., vol. 6, no. 12, pp. 769–779, Dec. 2006, doi: 10.1016/S1473-3099(06)70654-5.
  • [6] A. Strina et al., ‘Validation of epidemiological tools for eczema diagnosis in brazilian children: the isaac’s and uk working party’s criteria’, BMC Dermatol., vol. 10, no. 1, p. 11, Dec. 2010, doi: 10.1186/1471-5945-10-11.
  • [7] B. E. Rosenbaum et al., ‘Dermatology in Ghana: a retrospective review of skin disease at the Korle Bu Teaching Hospital Dermatology Clinic’, Pan Afr. Med. J., vol. 26, p. 125, 2017, doi: 10.11604/pamj.2017.26.125.10954.
  • [8] F. Jiang et al., ‘Artificial intelligence in healthcare: past, present and future’, Stroke Vasc. Neurol., vol. 2, no. 4, pp. 230–243, Dec. 2017, doi: 10.1136/svn-2017-000101.
  • [9] S. Chan, V. Reddy, B. Myers, Q. Thibodeaux, N. Brownstone, and W. Liao, ‘Machine Learning in Dermatology: Current Applications, Opportunities, and Limitations’, Dermatol. Ther., vol. 10, no. 3, pp. 365–386, Jun. 2020, doi: 10.1007/s13555-020-00372-0.
  • [10] S. İlkin, O. Aytar, T. H. Gençtürk, and S. Şahi̇n, ‘Dermoskopik Görüntülerde Lezyon Bölütleme İşlemlerinde K-ortalama Kümeleme Algoritmasının Kullanımı’, Gazi Üniversitesi Fen Bilim. Derg. Part C Tasar. Ve Teknol., vol. 8, no. 1, pp. 182–191, Mar. 2020, doi: 10.29109/gujsc.625378.
  • [11] R. Yasir, Md. A. Rahman, and N. Ahmed, ‘Dermatological disease detection using image processing and artificial neural network’, in 8th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh: IEEE, Dec. 2014, pp. 687–690. doi: 10.1109/ICECE.2014.7026918.
  • [12] K. S. Parikh, T. P. Shah, R. Kota, and R. Vora, ‘Diagnosing Common Skin Diseases using Soft Computing Techniques’, Int. J. Bio-Sci. Bio-Technol., vol. 7, no. 6, pp. 275–286, Dec. 2015, doi: 10.14257/ijbsbt.2015.7.6.28.
  • [13] M. Shamsul Arifin, M. Golam Kibria, A. Firoze, M. Ashraful Amini, and Hong Yan, ‘Dermatological disease diagnosis using color-skin images’, in 2012 International Conference on Machine Learning and Cybernetics, Xian, Shaanxi, China: IEEE, Jul. 2012, pp. 1675–1680. doi: 10.1109/ICMLC.2012.6359626.
  • [14] Department of Computer Science, Sunyani Technical University, Sunyani Ghana, S. Akyeramfo-Sam, A. Addo Philip, D. Yeboah, N. C. Nartey, and I. Kofi Nti, ‘A Web-Based Skin Disease Diagnosis Using Convolutional Neural Networks’, Int. J. Inf. Technol. Comput. Sci., vol. 11, no. 11, pp. 54–60, Nov. 2019, doi: 10.5815/ijitcs.2019.11.06.
  • [15] N. Akmalia, P. Sihombing, and Suherman, ‘Skin Diseases Classification Using Local Binary Pattern and Convolutional Neural Network’, in 2019 3rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), Medan, Indonesia: IEEE, Sep. 2019, pp. 168–173. doi: 10.1109/ELTICOM47379.2019.8943892.
  • [16] M. N. Bajwa et al., ‘Computer-Aided Diagnosis of Skin Diseases Using Deep Neural Networks’, Appl. Sci., vol. 10, no. 7, p. 2488, Apr. 2020, doi: 10.3390/app10072488.
  • [17] S. S. Mohammed and J. M. Al-Tuwaijari, ‘Skin Disease Classification System Based on Machine Learning Technique: A Survey’, IOP Conf. Ser. Mater. Sci. Eng., vol. 1076, no. 1, p. 012045, Feb. 2021, doi: 10.1088/1757-899X/1076/1/012045.
  • [18] M. Halder, H. Moh. Emrul Kabir, A. Mimi Rity, and A. Vowmik, ‘An automated detection of Scabies skin disease Using Image Processing and CNN’, in 2022 4th International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh: IEEE, Dec. 2022, pp. 1–6. doi: 10.1109/STI56238.2022.10103250.
  • [19] A. Dutta and A. Zisserman, ‘The VIA Annotation Software for Images, Audio and Video’, in Proceedings of the 27th ACM International Conference on Multimedia, Nice France: ACM, Oct. 2019, pp. 2276–2279. doi: 10.1145/3343031.3350535.
  • [20] M. Varlı and H. Yılmaz, ‘Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning’, J. Comput. Sci., vol. 67, p. 101943, Mar. 2023, doi: 10.1016/j.jocs.2023.101943.
  • [21] H. O. Ilhan, G. Serbes, and N. Aydin, ‘Decision and feature level fusion of deep features extracted from public COVID-19 data-sets’, Appl. Intell., vol. 52, no. 8, pp. 8551–8571, Jun. 2022, doi: 10.1007/s10489-021-02945-8.
  • [22] P. Purwono, A. Ma’arif, W. Rahmaniar, H. I. K. Fathurrahman, A. Z. K. Frisky, and Q. M. U. Haq, ‘Understanding of Convolutional Neural Network (CNN): A Review’, Int. J. Robot. Control Syst., vol. 2, no. 4, pp. 739–748, Jan. 2023, doi: 10.31763/ijrcs.v2i4.888.
  • [23] J. Liu and H. Zhao, ‘Application of convolution neural network in medical image processing’, Technol. Health Care, vol. 29, no. 2, pp. 407–417, Mar. 2021, doi: 10.3233/THC-202657.
  • [24] W. Yang, W. Luo, and Y. Zhang, ‘Classification of odontocete echolocation clicks using convolutional neural network’, J. Acoust. Soc. Am., vol. 147, no. 1, pp. 49–55, Jan. 2020, doi: 10.1121/10.0000514.
  • [25] X. Zhang, J. Li, W. Wu, F. Dong, and S. Wan, ‘Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Network’, Entropy, vol. 25, no. 5, p. 737, Apr. 2023, doi: 10.3390/e25050737.
  • [26] X. Wang and Z. Yang, ‘Research on Classification and Recognition of Object Image Based on Convolutional Neural Network’, IOP Conf. Ser. Mater. Sci. Eng., vol. 782, no. 4, p. 042062, Mar. 2020, doi: 10.1088/1757-899X/782/4/042062.
  • [27] H. Yılmaz, ‘Ai-Powered Healthcare Innovations: Rehabilitation, Education, And Early Diagnosis’, Sep. 2024, Serüven Yayınevi. doi: 10.5281/ZENODO.13885904.
  • [28] R. Kaur, H. GholamHosseini, R. Sinha, and M. Lindén, ‘Melanoma Classification Using a Novel Deep Convolutional Neural Network With Dermoscopic Images’, Sensors, vol. 22, no. 3, p. 1134, 2022, doi: 10.3390/s22031134.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomedikal Tanı
Bölüm Tasarım ve Teknoloji
Yazarlar

Hakan Yılmaz 0000-0002-8553-388X

Zeynep Nida Can 0009-0003-0323-1138

Hatice Şevval Baki 0009-0006-7158-1924

Tahsin Çökmez 0009-0006-6354-6942

Mehmet Özdem 0000-0002-2901-2342

Erken Görünüm Tarihi 17 Ekim 2025
Yayımlanma Tarihi 19 Ekim 2025
Gönderilme Tarihi 16 Aralık 2024
Kabul Tarihi 22 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 4

Kaynak Göster

APA Yılmaz, H., Can, Z. N., Baki, H. Ş., … Çökmez, T. (2025). ScabAI: A Deep Learning-Based Mobile Application for Scabies Detection from Skin Images. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 13(4). https://doi.org/10.29109/gujsc.1601385

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526