Araştırma Makalesi
BibTex RIS Kaynak Göster

Slime Mold Algorithm Approach for Load Flow Analysis and Optimization in Power Systems

Yıl 2025, Cilt: 13 Sayı: 4
https://doi.org/10.29109/gujsc.1705394

Öz

Electric energy is one of the most commonly used energy sources today. Therefore, how energy can be produced, transmitted, and consumed at the lowest cost is among the main topics that researchers are intensely working on. The limited nature of current energy sources and the rapidly increasing demand for energy necessitate scientific and technological efforts in this field. With a growing world economy and the continuous development and expansion of modern power systems, the voltage problems arising in power systems have become quite significant in terms of controlling energy systems. In this context, one of the most important issues that need to be addressed in power systems is optimal power flow (OPF). Therefore, in the study conducted, the Slime Mold Algorithm (SMA) was used to solve the OPF problem in power systems according to the objective functions, and it was tested with different objective functions. As the objective function, three single objectives (fuel cost, active power loss, and voltage deviation minimization) and the combination of these objective functions, three multi-objective functions, have been determined. The tests conducted to solve the OPF problem were carried out on the IEEE-30 bus system. According to the results obtained, it has been observed that the SMA algorithm is more successful than other algorithms in the literature in solving problems in power systems.

Kaynakça

  • [1] Standerd, A., For electric power systems and equipment-voltage ratings (60 Hz). ANSI C84, 2006: p. 1-2006.
  • [2] Yıldız, E. and F.O. Hocaoğlu, Afyon Kocatepe Üniversitesi enerji dağıtım hattının optimizasyon yöntemleri ile tasarlanması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 2023. 12(2): p. 343-348.
  • [3] Glover, J. D., Sarma, M. S. and Overbye, T. J. (2012). Power System Analysis and Design (Fifth edition). Stamford, USA; Cengage Learning, 294-354
  • [4] Kundur, P., Power system stability. Power system stability and control, 2007. 10(1): p. 7-1.
  • [5] Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C., Cutsem, R. ve Vittal, V. (2004). Güç Sistemi Kararlılığının Tanımı ve Sınıflandırılması. Güç Sistemlerinde IEEE İşlemi, 19(2), 1387-1401. https://home.engineering.iastate.edu/~jdm/ee554/TermsDefinitions2004.pdf.
  • [6] Farhat, M., et al., ESMA-OPF: Enhanced slime mould algorithm for solving optimal power flow problem. Sustainability, 2022. 14(4): p. 2305.
  • [7] ElSayed, S.K. and E.E. Elattar, Slime mold algorithm for optimal reactive power dispatch combining with renewable energy sources. Sustainability, 2021. 13(11): p. 5831.
  • [8] Ermiş, S. and O. Taşdemir, Optimal Location and Sizing of Distributed Generation Using Artificial Bee Colony and JAYA Algorithms. Gazi Journal of Engineering Sciences, 2025: p. 1-12.
  • [9] Kareem, R.M., M.K. Al-Nussairi, and R. Bayindir, Optimal Performance of PI Controller for AC Microgrid based on Metaheuristic Optimization Algorithms. IEEE Access, 2025.
  • [10] Yeşilbudak, M., et al., Farklı Bara Sayısına Sahip Güç Sistemlerinde Yük Akışı Analiz Metotlarının Karşılaştırılması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 2017. 5(3): p. 237-246.
  • [11] Li, S., et al., Slime mould algorithm: A new method for stochastic optimization. Future generation computer systems, 2020. 111: p. 300-323.
  • [12] Gharehchopogh, F.S., et al., Slime mould algorithm: A comprehensive survey of its variants and applications. Archives of Computational Methods in Engineering, 2023. 30(4): p. 2683-2723.
  • [13] Wei, Y., et al., Advances in slime mould algorithm: a comprehensive survey. Biomimetics, 2024. 9(1): p. 31.
  • [14] Dong, Y., R. Tang, and X. Cai, Enhanced Multi-Strategy Slime Mould Algorithm for Global Optimization Problems. Biomimetics, 2024. 9(8): p. 500.
  • [15] Hai, T., et al., Optimizing energy hubs with a focus on ice energy storage: a strategic approach for managing cooling, thermal, and electrical loads via an advanced slime mold algorithm. International Journal of Low-Carbon Technologies, 2024. 19: p. 2568-2579.
  • [16] Abid, M.S., et al., Mitigating the effect of electric vehicle integration in distribution grid using slime mould algorithm. Alexandria Engineering Journal, 2023. 64: p. 785-800.
  • [17] Al-Kaabi, M., V. Dumbrava, and M. Eremia, A slime mould algorithm programming for solving single and multi-objective optimal power flow problems with pareto front approach: A case study of the iraqi super grid high voltage. Energies, 2022. 15(20): p. 7473.
  • [18] IEEE-30 Bus. 2020. https://trscribdcom/doc/282453109/IEEE-30-Bus-System-Data.
  • [19] Duman, S., et al., Optimal power flow using gravitational search algorithm. Energy conversion and management, 2012. 59: p. 86-95.
  • [20] Ermiş, S., Multi-objective optimal power flow using a modified weighted teaching-learning based optimization algorithm. Electric Power Components and Systems, 2023. 51(20): p. 2536-2556.
  • [21] Kotb, M.F. and A.A. El-Fergany, Optimal power flow solution using moth swarm optimizer considering generating units prohibited zones and valve ripples. Journal of Electrical Engineering & Technology, 2020. 15: p. 179-192.
  • [22] Dao, T.M., et al., A chaotic equilibrium optimization for temperature-dependent optimal power flow. Smart Science, 2023. 11(2): p. 380-394.
  • [23] Taher, M.A., et al., Modified grasshopper optimization framework for optimal power flow solution. Electrical Engineering, 2019. 101: p. 121-148.
  • [24] Mirjalili, S., S.M. Mirjalili, and A. Lewis, Grey wolf optimizer. Advances in engineering software, 2014. 69: p. 46-61.
  • [25] Kumari, M.S. and S. Maheswarapu, Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution. International Journal of Electrical Power & Energy Systems, 2010. 32(6): p. 736-742.
  • [26] Mohamed, A.-A.A., et al., Optimal power flow using moth swarm algorithm. Electric Power Systems Research, 2017. 142: p. 190-206.
  • [27] Attia, A.-F., Y.A. Al-Turki, and A.M. Abusorrah, Optimal power flow using adapted genetic algorithm with adjusting population size. Electric Power Components and Systems, 2012. 40(11): p. 1285-1299.
  • [28] Bouchekara, H., Optimal power flow using black-hole-based optimization approach. Applied Soft Computing, 2014. 24: p. 879-888.
  • [29] Abou El Ela, A., M. Abido, and S. Spea, Optimal power flow using differential evolution algorithm. Electric Power Systems Research, 2010. 80(7): p. 878-885.
  • [30] Bhattacharya, A. and P. Chattopadhyay, Application of biogeography-based optimisation to solve different optimal power flow problems. IET generation, transmission & distribution, 2011. 5(1): p. 70-80.

Güç Sistemlerinde Yük Akış Analizi ve Optimizasyonu için Balçık Küfü Algoritması Yaklaşımı

Yıl 2025, Cilt: 13 Sayı: 4
https://doi.org/10.29109/gujsc.1705394

Öz

Elektrik enerjisi, günümüzde en yaygın biçimde kullanılan enerji kaynakların başında gelmektedir. Bu nedenle, enerjinin en uygun maliyetle nasıl üretileceği, iletileceği ve tüketileceği araştırmacılar tarafından üzerinde yoğun şekilde çalışılan başlıca konular arasında yer almaktadır. Mevcut enerji kaynaklarının sınırlı olması ve buna karşılık enerjiye olan talebin hızla artması, bu alandaki bilimsel ve teknolojik çalışmaların gerekliliğini zorunlu kılmaktadır. Büyüyen bir dünya ekonomisiyle modern güç sistemlerinin her geçen gün biraz daha gelişmesi ve büyümesiyle birlikte güç sistemlerinde oluşan gerilim problemleri nedeniyle, enerji sistemlerinin kontrol altına alınması bakımından oldukça önem arz etmektedir. Bu bağlamda, güç sistemlerinde optimal güç akışı (OGA) üzerinde çalışılması gereken en önemli konulardan biridir. Dolayısıyla yapılan çalışmada, güç sistemlerinde amaç fonksiyonlarına göre OGA probleminin çözümünde Balçık Küfü Algoritması (BKA) kullanılmış ve farklı amaç fonksiyonlarında test edilmiştir. Amaç fonksiyonu olarak üç adet tekli (yakıt maliyeti, aktif güç kaybı ve gerilim sapması minimizasyonu) ve bu amaç fonksiyonlarının kombinasyonu üç adet çoklu amaç fonksiyonu belirlenmiştir. OGA probleminin çözümü için yapılan testler IEEE-30 baralı sistem üzerinden gerçekleştirilmiştir. Elde edilen sonuçlara göre BKA algoritmasının güç sistemlerindeki problemleri çözmede literatürdeki diğer algoritmalardan daha başarılı olduğu gözlemlenmiştir.

Kaynakça

  • [1] Standerd, A., For electric power systems and equipment-voltage ratings (60 Hz). ANSI C84, 2006: p. 1-2006.
  • [2] Yıldız, E. and F.O. Hocaoğlu, Afyon Kocatepe Üniversitesi enerji dağıtım hattının optimizasyon yöntemleri ile tasarlanması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 2023. 12(2): p. 343-348.
  • [3] Glover, J. D., Sarma, M. S. and Overbye, T. J. (2012). Power System Analysis and Design (Fifth edition). Stamford, USA; Cengage Learning, 294-354
  • [4] Kundur, P., Power system stability. Power system stability and control, 2007. 10(1): p. 7-1.
  • [5] Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C., Cutsem, R. ve Vittal, V. (2004). Güç Sistemi Kararlılığının Tanımı ve Sınıflandırılması. Güç Sistemlerinde IEEE İşlemi, 19(2), 1387-1401. https://home.engineering.iastate.edu/~jdm/ee554/TermsDefinitions2004.pdf.
  • [6] Farhat, M., et al., ESMA-OPF: Enhanced slime mould algorithm for solving optimal power flow problem. Sustainability, 2022. 14(4): p. 2305.
  • [7] ElSayed, S.K. and E.E. Elattar, Slime mold algorithm for optimal reactive power dispatch combining with renewable energy sources. Sustainability, 2021. 13(11): p. 5831.
  • [8] Ermiş, S. and O. Taşdemir, Optimal Location and Sizing of Distributed Generation Using Artificial Bee Colony and JAYA Algorithms. Gazi Journal of Engineering Sciences, 2025: p. 1-12.
  • [9] Kareem, R.M., M.K. Al-Nussairi, and R. Bayindir, Optimal Performance of PI Controller for AC Microgrid based on Metaheuristic Optimization Algorithms. IEEE Access, 2025.
  • [10] Yeşilbudak, M., et al., Farklı Bara Sayısına Sahip Güç Sistemlerinde Yük Akışı Analiz Metotlarının Karşılaştırılması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 2017. 5(3): p. 237-246.
  • [11] Li, S., et al., Slime mould algorithm: A new method for stochastic optimization. Future generation computer systems, 2020. 111: p. 300-323.
  • [12] Gharehchopogh, F.S., et al., Slime mould algorithm: A comprehensive survey of its variants and applications. Archives of Computational Methods in Engineering, 2023. 30(4): p. 2683-2723.
  • [13] Wei, Y., et al., Advances in slime mould algorithm: a comprehensive survey. Biomimetics, 2024. 9(1): p. 31.
  • [14] Dong, Y., R. Tang, and X. Cai, Enhanced Multi-Strategy Slime Mould Algorithm for Global Optimization Problems. Biomimetics, 2024. 9(8): p. 500.
  • [15] Hai, T., et al., Optimizing energy hubs with a focus on ice energy storage: a strategic approach for managing cooling, thermal, and electrical loads via an advanced slime mold algorithm. International Journal of Low-Carbon Technologies, 2024. 19: p. 2568-2579.
  • [16] Abid, M.S., et al., Mitigating the effect of electric vehicle integration in distribution grid using slime mould algorithm. Alexandria Engineering Journal, 2023. 64: p. 785-800.
  • [17] Al-Kaabi, M., V. Dumbrava, and M. Eremia, A slime mould algorithm programming for solving single and multi-objective optimal power flow problems with pareto front approach: A case study of the iraqi super grid high voltage. Energies, 2022. 15(20): p. 7473.
  • [18] IEEE-30 Bus. 2020. https://trscribdcom/doc/282453109/IEEE-30-Bus-System-Data.
  • [19] Duman, S., et al., Optimal power flow using gravitational search algorithm. Energy conversion and management, 2012. 59: p. 86-95.
  • [20] Ermiş, S., Multi-objective optimal power flow using a modified weighted teaching-learning based optimization algorithm. Electric Power Components and Systems, 2023. 51(20): p. 2536-2556.
  • [21] Kotb, M.F. and A.A. El-Fergany, Optimal power flow solution using moth swarm optimizer considering generating units prohibited zones and valve ripples. Journal of Electrical Engineering & Technology, 2020. 15: p. 179-192.
  • [22] Dao, T.M., et al., A chaotic equilibrium optimization for temperature-dependent optimal power flow. Smart Science, 2023. 11(2): p. 380-394.
  • [23] Taher, M.A., et al., Modified grasshopper optimization framework for optimal power flow solution. Electrical Engineering, 2019. 101: p. 121-148.
  • [24] Mirjalili, S., S.M. Mirjalili, and A. Lewis, Grey wolf optimizer. Advances in engineering software, 2014. 69: p. 46-61.
  • [25] Kumari, M.S. and S. Maheswarapu, Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution. International Journal of Electrical Power & Energy Systems, 2010. 32(6): p. 736-742.
  • [26] Mohamed, A.-A.A., et al., Optimal power flow using moth swarm algorithm. Electric Power Systems Research, 2017. 142: p. 190-206.
  • [27] Attia, A.-F., Y.A. Al-Turki, and A.M. Abusorrah, Optimal power flow using adapted genetic algorithm with adjusting population size. Electric Power Components and Systems, 2012. 40(11): p. 1285-1299.
  • [28] Bouchekara, H., Optimal power flow using black-hole-based optimization approach. Applied Soft Computing, 2014. 24: p. 879-888.
  • [29] Abou El Ela, A., M. Abido, and S. Spea, Optimal power flow using differential evolution algorithm. Electric Power Systems Research, 2010. 80(7): p. 878-885.
  • [30] Bhattacharya, A. and P. Chattopadhyay, Application of biogeography-based optimisation to solve different optimal power flow problems. IET generation, transmission & distribution, 2011. 5(1): p. 70-80.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Enerjisi Taşıma, Şebeke ve Sistemleri, Elektrik Tesisleri
Bölüm Araştırma Makalesi
Yazarlar

Oğuz Taşdemir 0000-0003-1782-0024

Salih Ermiş 0000-0002-1053-9160

Abdülkadir Özdoğan 0009-0007-9129-1673

Erken Görünüm Tarihi 18 Kasım 2025
Yayımlanma Tarihi 26 Kasım 2025
Gönderilme Tarihi 24 Mayıs 2025
Kabul Tarihi 27 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 4

Kaynak Göster

APA Taşdemir, O., Ermiş, S., & Özdoğan, A. (2025). Slime Mold Algorithm Approach for Load Flow Analysis and Optimization in Power Systems. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 13(4). https://doi.org/10.29109/gujsc.1705394

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526