Araştırma Makalesi
BibTex RIS Kaynak Göster

Çarpan jetle ısı transferinde geometrik parametrelerin sayısal optimizasyonu: Yanıt yüzey yöntemi

Yıl 2022, , 357 - 369, 15.01.2022
https://doi.org/10.17714/gumusfenbil.1026237

Öz

Bu çalışmada çarpan jet ile soğutmada parametrelerin etkisini belirlemek için Yanıt Yüzey Yöntemi (YYY) ile sayısal optimizasyon yapılmıştır. Nozul sayısı, kanat uzunluğu, kanat geometrisi ve nozul-yüzey mesafesi (H) faktörlerinin etkisi araştırılmıştır. Yanıt değişkeni olarak sıcaklık farkı alınmıştır. Sonuçta en etkin parametre kanat uzunluğu olarak elde edilmiştir. Optimum sonuçlar; nozul sayısı için 5, kanat uzunluğu için 1.5 cm, kanat geometrisi olarak silindir ve H için 2 cm olarak elde edilmiştir. Ayrıca, yanıt değişkeni olan sıcaklık farkı için bir matematiksel model geliştirilmiştir.

Kaynakça

  • Ahmed, Z. U., Al-Abdeli, Y. M., & Guzzomi, F. G. (2015). Impingement pressure characteristics of swirling and non-swirling turbulent jets. Experimental Thermal and Fluid Science, 68, 722-732.
  • Al-Hadhrami, L. M., Shaahid, S., & Al-Mubarak, A. A. (2011). Jet impingement cooling in gas turbines for improving thermal efficiency and power density. Advances in Gas Turbine Technology, 191-210.
  • Ashforth-Frost, S., Jambunathan, K., & Whitney, C. (1997). Velocity and turbulence characteristics of a semiconfined orthogonally impinging slot jet. Experimental Thermal and Fluid Science, 14(1), 60-67.
  • Barbosa, F. V., Sousa, S. D., Teixeira, S. F., & Teixeira, J. C. (2021). Application of Taguchi Method for the Analysis of a Multiple Air Jet Impingement System with and without Target Plate Motion. International Journal of Heat and Mass Transfer, 176, 121504.
  • Buzzard, W. C., Ren, Z., Ligrani, P. M., Nakamata, C., & Ueguchi, S. (2017). Influences of target surface small-scale rectangle roughness on impingement jet array heat transfer. International Journal of Heat and Mass Transfer, 110, 805-816.
  • Caliskan, S., Baskaya, S., & Calisir, T. (2014). Experimental and numerical investigation of geometry effects on multiple impinging air jets. International Journal of Heat and Mass Transfer, 75, 685-703.
  • ÇELİK, N., & Haydar, E. (2010). Çarpan Dairesel Bir Jette Çarpma Bölgesi Türbülans Şiddetinin Isı Transferine Etkisi. Isı Bilimi ve Tekniği Dergisi, 30(1), 91-98.
  • Demircan, T., & Türkoğlu, H. (2007). Bir yüzeye çarpan osilasyonlu iki boyutlu dikdörtgen hava jetinin sayısal olarak incelenmesi. Isı Bilimi ve Tekniği Dergisi, 27(1), 39-50.
  • Demircan, T., & Türkoğlu, H. (2010). Çarpan Osilasyonlu Jetlerde Osilasyon Karakteristiklerinin ve Çarpma Mesafesinin Akiş Ve Isi Transferine Etkilerinin Sayisal Olarak İncelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 25(4).
  • Diop, S. N., Dieng, B., & Senaha, I. (2021). A study on heat transfer characteristics by impinging jet with several velocities distribution. Case Studies in Thermal Engineering, 101111.
  • Gelis, K., & Akyurek, E. F. (2021). Entropy generation of different panel radiator types: Design of experiments using response surface methodology (RSM). Journal of Building Engineering, 41, 102369.
  • Ianiro, A., & Cardone, G. (2012). Heat transfer rate and uniformity in multichannel swirling impinging jets. Applied Thermal Engineering, 49, 89-98. Karabulut, K., & Alnak, D. E. (2020). Değişik şekilde tasarlanan ısıtılmış yüzeylerin hava jeti çarpmalı soğutulmasının araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 88-98.
  • Kilic, M., & Baskaya, S. (2017). Farklı geometride akış yönlendiriciler ve çarpan jet kullanarak yüksek ısı akılı bir yüzeyden olan ısı transferinin iyileştirilmesi.
  • Lam, P. A. K., & Prakash, K. A. (2017). A numerical investigation and design optimization of impingement cooling system with an array of air jets. International Journal of Heat and Mass Transfer, 108, 880-900.
  • Maghrabie, H. M. (2021). Heat transfer intensification of jet impingement using exciting jets-A comprehensive review. Renewable and Sustainable Energy Reviews, 139, 110684.
  • Monnoyer, F., & Lochegnies, D. (2008). Heat transfer and flow characteristics of the cooling system of an industrial glass tempering unit. Applied Thermal Engineering, 28(17-18), 2167-2177.
  • Nuntadusit, C., Wae-Hayee, M., Bunyajitradulya, A., & Eiamsa-Ard, S. (2012). Heat transfer enhancement by multiple swirling impinging jets with twisted-tape swirl generators. International Communications in Heat and Mass Transfer, 39(1), 102-107.
  • Ortega-Casanova, J. (2012). CFD and correlations of the heat transfer from a wall at constant temperature to an impinging swirling jet. International Journal of Heat and Mass Transfer, 55(21-22), 5836-5845.
  • Ortega-Casanova, J., & Granados-Ortiz, F. (2014). Numerical simulation of the heat transfer from a heated plate with surface variations to an impinging jet. International Journal of Heat and Mass Transfer, 76, 128-143.
  • Penumadu, P. S., & Rao, A. G. (2017). Numerical investigations of heat transfer and pressure drop characteristics in multiple jet impingement system. Applied Thermal Engineering, 110, 1511-1524.
  • Rao, G. A., Levy, Y., & Kitron-Belinkov, M. (2009). Heat transfer characteristics of a multiple jet impingement system. Paper presented at the 48th Israeli Aerospace Conference.
  • Wang, G., Deng, Y., Xu, X., He, X., Zhao, Y., Zou, Y., . . . Yue, J. (2016). Optimization of air jet impingement drying of okara using response surface methodology. Food control, 59, 743-749.
  • Wannassi, M., & Monnoyer, F. (2015). Fluid flow and convective heat transfer of combined swirling and straight impinging jet arrays. Applied Thermal Engineering, 78, 62-73.
  • Yakut, R., Yakut, K., Yeşildal, F., & Karabey, A. (2016). Experimental and numerical investigations of impingement air jet for a heat sink. Procedia Engineering, 157, 3-12.
  • Yesildal, F., Ozakin, A. N., & Yakut, K. (2021). Optimization of operational parameters for a photovoltaic panel cooled by spray cooling. Engineering Science and Technology, an International Journal.
  • Yildizeli, A., & Cadirci, S. (2020). Multi-objective optimization of multiple impinging jet system through genetic algorithm. International Journal of Heat and Mass Transfer, 158, 119978.

Numerical optimization of geometric parameters in impinging jet heat transfer: Response surface methodology

Yıl 2022, , 357 - 369, 15.01.2022
https://doi.org/10.17714/gumusfenbil.1026237

Öz

In this study, numerical optimization was carried out with the Response Surface Method (RSM) to determine the effect of parameters in impinging jet cooling. The effects of nozzle number, fin height, fin geometry and nozzle to surface distance (H) were investigated. The temperature difference was taken as the response variable. As a result, the most effective parameter was obtained as the fin height. Optimal results; 5 for the number of nozzles, 1.5 cm for the fin height, the cylinder fin geometry and 2 cm for H distance. In addition, a mathematical model has been developed for the temperature difference determined as the response variable.

Kaynakça

  • Ahmed, Z. U., Al-Abdeli, Y. M., & Guzzomi, F. G. (2015). Impingement pressure characteristics of swirling and non-swirling turbulent jets. Experimental Thermal and Fluid Science, 68, 722-732.
  • Al-Hadhrami, L. M., Shaahid, S., & Al-Mubarak, A. A. (2011). Jet impingement cooling in gas turbines for improving thermal efficiency and power density. Advances in Gas Turbine Technology, 191-210.
  • Ashforth-Frost, S., Jambunathan, K., & Whitney, C. (1997). Velocity and turbulence characteristics of a semiconfined orthogonally impinging slot jet. Experimental Thermal and Fluid Science, 14(1), 60-67.
  • Barbosa, F. V., Sousa, S. D., Teixeira, S. F., & Teixeira, J. C. (2021). Application of Taguchi Method for the Analysis of a Multiple Air Jet Impingement System with and without Target Plate Motion. International Journal of Heat and Mass Transfer, 176, 121504.
  • Buzzard, W. C., Ren, Z., Ligrani, P. M., Nakamata, C., & Ueguchi, S. (2017). Influences of target surface small-scale rectangle roughness on impingement jet array heat transfer. International Journal of Heat and Mass Transfer, 110, 805-816.
  • Caliskan, S., Baskaya, S., & Calisir, T. (2014). Experimental and numerical investigation of geometry effects on multiple impinging air jets. International Journal of Heat and Mass Transfer, 75, 685-703.
  • ÇELİK, N., & Haydar, E. (2010). Çarpan Dairesel Bir Jette Çarpma Bölgesi Türbülans Şiddetinin Isı Transferine Etkisi. Isı Bilimi ve Tekniği Dergisi, 30(1), 91-98.
  • Demircan, T., & Türkoğlu, H. (2007). Bir yüzeye çarpan osilasyonlu iki boyutlu dikdörtgen hava jetinin sayısal olarak incelenmesi. Isı Bilimi ve Tekniği Dergisi, 27(1), 39-50.
  • Demircan, T., & Türkoğlu, H. (2010). Çarpan Osilasyonlu Jetlerde Osilasyon Karakteristiklerinin ve Çarpma Mesafesinin Akiş Ve Isi Transferine Etkilerinin Sayisal Olarak İncelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 25(4).
  • Diop, S. N., Dieng, B., & Senaha, I. (2021). A study on heat transfer characteristics by impinging jet with several velocities distribution. Case Studies in Thermal Engineering, 101111.
  • Gelis, K., & Akyurek, E. F. (2021). Entropy generation of different panel radiator types: Design of experiments using response surface methodology (RSM). Journal of Building Engineering, 41, 102369.
  • Ianiro, A., & Cardone, G. (2012). Heat transfer rate and uniformity in multichannel swirling impinging jets. Applied Thermal Engineering, 49, 89-98. Karabulut, K., & Alnak, D. E. (2020). Değişik şekilde tasarlanan ısıtılmış yüzeylerin hava jeti çarpmalı soğutulmasının araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 88-98.
  • Kilic, M., & Baskaya, S. (2017). Farklı geometride akış yönlendiriciler ve çarpan jet kullanarak yüksek ısı akılı bir yüzeyden olan ısı transferinin iyileştirilmesi.
  • Lam, P. A. K., & Prakash, K. A. (2017). A numerical investigation and design optimization of impingement cooling system with an array of air jets. International Journal of Heat and Mass Transfer, 108, 880-900.
  • Maghrabie, H. M. (2021). Heat transfer intensification of jet impingement using exciting jets-A comprehensive review. Renewable and Sustainable Energy Reviews, 139, 110684.
  • Monnoyer, F., & Lochegnies, D. (2008). Heat transfer and flow characteristics of the cooling system of an industrial glass tempering unit. Applied Thermal Engineering, 28(17-18), 2167-2177.
  • Nuntadusit, C., Wae-Hayee, M., Bunyajitradulya, A., & Eiamsa-Ard, S. (2012). Heat transfer enhancement by multiple swirling impinging jets with twisted-tape swirl generators. International Communications in Heat and Mass Transfer, 39(1), 102-107.
  • Ortega-Casanova, J. (2012). CFD and correlations of the heat transfer from a wall at constant temperature to an impinging swirling jet. International Journal of Heat and Mass Transfer, 55(21-22), 5836-5845.
  • Ortega-Casanova, J., & Granados-Ortiz, F. (2014). Numerical simulation of the heat transfer from a heated plate with surface variations to an impinging jet. International Journal of Heat and Mass Transfer, 76, 128-143.
  • Penumadu, P. S., & Rao, A. G. (2017). Numerical investigations of heat transfer and pressure drop characteristics in multiple jet impingement system. Applied Thermal Engineering, 110, 1511-1524.
  • Rao, G. A., Levy, Y., & Kitron-Belinkov, M. (2009). Heat transfer characteristics of a multiple jet impingement system. Paper presented at the 48th Israeli Aerospace Conference.
  • Wang, G., Deng, Y., Xu, X., He, X., Zhao, Y., Zou, Y., . . . Yue, J. (2016). Optimization of air jet impingement drying of okara using response surface methodology. Food control, 59, 743-749.
  • Wannassi, M., & Monnoyer, F. (2015). Fluid flow and convective heat transfer of combined swirling and straight impinging jet arrays. Applied Thermal Engineering, 78, 62-73.
  • Yakut, R., Yakut, K., Yeşildal, F., & Karabey, A. (2016). Experimental and numerical investigations of impingement air jet for a heat sink. Procedia Engineering, 157, 3-12.
  • Yesildal, F., Ozakin, A. N., & Yakut, K. (2021). Optimization of operational parameters for a photovoltaic panel cooled by spray cooling. Engineering Science and Technology, an International Journal.
  • Yildizeli, A., & Cadirci, S. (2020). Multi-objective optimization of multiple impinging jet system through genetic algorithm. International Journal of Heat and Mass Transfer, 158, 119978.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ahmet Numan Özakın 0000-0002-2083-8703

Faruk Yeşildal 0000-0002-7307-3556

Yayımlanma Tarihi 15 Ocak 2022
Gönderilme Tarihi 20 Kasım 2021
Kabul Tarihi 1 Ocak 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Özakın, A. N., & Yeşildal, F. (2022). Çarpan jetle ısı transferinde geometrik parametrelerin sayısal optimizasyonu: Yanıt yüzey yöntemi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(1), 357-369. https://doi.org/10.17714/gumusfenbil.1026237