Araştırma Makalesi
BibTex RIS Kaynak Göster

Cytotoxicity of silver nanoparticles obtained from Eruca vesicaria on rainbow trout gonad cell line-2 (RTG-2)

Yıl 2022, , 1093 - 1101, 15.10.2022
https://doi.org/10.17714/gumusfenbil.1104370

Öz

The rising application of silver (Ag) nanoparticles in many sectors such as food, medicine, and agriculture lead to toxic effects on the ecological environment. Thus, studies on biological synthesis methods are carried out in order to diminish the toxicity caused by Ag nanoparticle synthesis methods. However, studies on the toxicity of biosynthesized Ag nanoparticles on fish cell lines are very few. The purpose of this research was to perform the biological synthesis of Ag nanoparticles via Eruca vesicaria plant extract and to examine their toxicity in rainbow trout gonad cell line-2 (RTG 2). The characterization of Ag nanoparticles obtained from E. vesicaria was done by UV-vis, TEM, and XRD. The toxicity of Ag nanoparticles (100 µg/mL- 6,25 µg/mL) in the RTG-2 cell for 24 hours was determined by sulforhodamine B assay. Ag nanoparticles obtained in the form of a sphere, triangle, cube, and sizes of 5-20 nm showed significant a toxic effect on RTG-2 fish cells depending on the dose at p≤0,001 levels. This study is important in terms of proving that Ag nanoparticles obtained by biological synthesis have a toxic effect on fish cell lines and showing that there is a need for studies to reduce the release of Ag nanoparticles to the environment rather than synthesis methods.

Kaynakça

  • Abbas, Q. M. S., Phull, A. R., Rafiq, M., Hassan, M., Lee, K. H., & Seo, S. Y. (2017). Green synthesis of silver nanoparticles using Bidens frondosa extract and their tyrosinase activity. Iranian Journal of Pharmaceutical Research: IJPR, 16(2), 763. PMID: 28979330
  • Alyousef, A. A., Arshad, M., AlAkeel, R., & Alqasim, A. (2019). Biogenic silver nanoparticles by Myrtus communis plant extract: biosynthesis, characterization and antibacterial activity. Biotechnology & Biotechnological Equipment, 33(1), 931-936. https://doi.org/10.1080/13102818.2019.1629840
  • Aritonang, H. F., Koleangan, H., & Wuntu, A. D. (2019). Synthesis of silver nanoparticles using aqueous extract of medicinal plants’(Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. International journal of microbiology, 2019. https://doi.org/10.1155/2019/8642303
  • Baghizadeh, A., Ranjbar, S., Gupta, V. K., Asif, M., Pourseyedi, S., Karimi, M. J., & Mohammadinejad, R. (2015). Green synthesis of silver nanoparticles using seed extract of Calendula officinalis in liquid phase. Journal of molecular liquids, 207, 159-163. https://doi.org/10.1016/j.molliq.2015.03.029
  • Balachandar, R., Gurumoorthy, P., Karmegam, N., Barabadi, H., Subbaiya, R., Anand, K., ... & Saravanan, M. (2019). Plant-mediated synthesis, characterization and bactericidal potential of emerging silver nanoparticles using stem extract of Phyllanthus pinnatus: a recent advance in phytonanotechnology. Journal of Cluster Science, 30(6), 1481-1488. https://doi.org/10.1007/s10876-019-01591-y
  • Baran, A., Baran, M. F., Keskin, C., Kandemir, S. I., Valiyeva, M., Mehraliyeva, S., ... & Eftekhari, A. (2021). Ecofriendly/Rapid synthesis of silver nanoparticles using extract of waste parts of artichoke (cynara scolymus L.) and evaluation of their cytotoxic and antibacterial activities. Journal of Nanomaterials, 2021. https://doi.org/10.1155/2021/2270472
  • Baran, A., Fırat Baran, M., Keskin, C., Hatipoğlu, A., Yavuz, Ö., İrtegün Kandemir, S., ... & Eftekhari, A. (2022). Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from Cicer arietinum L. green leaf extract. Frontiers in Bioengineering and Biotechnology, 263. https://doi.org/10.3389/fbioe.2022.855136
  • Behravan, M., Panahi, A. H., Naghizadeh, A., Ziaee, M., Mahdavi, R., & Mirzapour, A. (2019). Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International journal of biological macromolecules, 124, 148-154. https://doi.org/10.1016/j.ijbiomac.2018.11.101
  • Bélteky, P., Rónavári, A., Igaz, N., Szerencsés, B., Tóth, I. Y., Pfeiffer, I., ... & Kónya, Z. (2019). Silver nanoparticles: Aggregation behavior in biorelevant conditions and its impact on biological activity. International journal of nanomedicine, 14, 667. https://doi.org/10.2147/IJN.S185965
  • Bermejo-Nogales, A., Fernández-Cruz, M. L., & Navas, J. M. (2017). Fish cell lines as a tool for the ecotoxicity assessment and ranking of engineered nanomaterials. Regulatory Toxicology and Pharmacology, 90, 297-307. https://doi.org/10.1016/j.yrtph.2017.09.029
  • Caminada D, Escher C & Fent, K. (2006). Cytotoxicity of pharmaceuticals found in aquatic systems: Comparison of PLHC-1 and RTG-2 fish cell lines. Aquatic Toxicology, 79(2), 114–123. https://doi.org/10.1016/j.aquatox.2006.05.010
  • Carmona, E. R., Benito, N., Plaza, T., & Recio-Sánchez, G. (2017). Green synthesis of silver nanoparticles by using leaf extracts from the endemic Buddleja globosa hope. Green Chemistry Letters and Reviews, 10(4), 250-256. https://doi.org/10.1080/17518253.2017.1360400
  • Connolly, M., Fernandez-Cruz, M. L., Quesada-Garcia, A., Alte, L., Segner, H., & Navas, J. M. (2015). Comparative cytotoxicity study of silver nanoparticles (AgNPs) in a variety of rainbow trout cell lines (RTL-W1, RTH-149, RTG-2) and primary hepatocytes. International journal of environmental research and public health, 12(5), 5386-5405. https://doi.org/10.3390/ijerph120505386
  • de Aragão, A. P., de Oliveira, T. M., Quelemes, P. V., Perfeito, M. L. G., Araújo, M. C., Santiago, J., ... & Quaresma, P. (2016). JR de Souza de Almeida Leite, DA da Silva, Green synthesis of silver nanoparticles using the seaweed gracilaria birdiae and their antibacterial activity. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2016.04.014
  • de Jesús Ruíz-Baltazar, Á., Reyes-López, S. Y., de Lourdes Mondragón-Sánchez, M., Estevez, M., Hernández-Martinez, A. R., & Pérez, R. (2018). Biosynthesis of Ag nanoparticles using Cynara cardunculus leaf extract: evaluation of their antibacterial and electrochemical activity. Results in Physics, 11, 1142-1149. https://doi.org/10.1016/j.rinp.2018.11.032
  • Demir, V., Bucher, J., Kropf, C., Arenz, M., & Segner, H. (2020). Comparative study of cytotoxicity by platinum nanoparticles and ions in vitro systems based on fish cell lines. Toxicology in vitro, 66, 104859. https://doi.org/10.1016/j.tiv.2020.104859
  • Du, J., Tang, J., Xu, S., Ge, J., Dong, Y., Li, H., & Jin, M. (2018). A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms. Regulatory Toxicology and Pharmacology, 98, 231-239. https://doi.org/10.1016/j.yrtph.2018.08.003
  • Onur, D. U. R. A., Tülek, A., Sönmez, İ., Erdoğuş, F.D., Yeşilayer, A., & Kepenekci, İ. (2019). Lantana camara L.(Lamiales: Verbenaceae)'nın sulu ekstraktı kullanılarak hazırlanan gümüş nanopartikül (AgNPs) uygulamalarının Buğday gal nematodu [Anguina tritici Thorne, 1949 (Nematoda: Anguinidae)]’na etkileri. Bitki Koruma Bülteni, 59(2), 49-53. https://doi.org/10.16955/bitkorb.485072
  • Farkas, J., Christian, P., Urrea, J. A. G., Roos, N., Hassellöv, M., Tollefsen, K. E., & Thomas, K. V. (2010). Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology, 96(1), 44-52. https://doi.org/10.1016/j.aquatox.2009.09.016
  • fırat BARAN, M. (2019). Prunus avium kiraz yaprağı özütü ile gümüş nanopartikül (AgNP) sentezi ve antimikrobiyal etkisinin incelenmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10(1), 221-227. https://doi.org/10.24012/dumf.487255
  • Gamboa, S. M., Rojas, E. R., Martínez, V. V., & Vega-Baudrit, J. (2019). Synthesis and characterization of silver nanoparticles and their application as an antibacterial agent. Int. J. Biosen. Bioelectron, 5, 166-173. https://doi.org/10.15406/ijbsbe.2019.05.00172
  • Gomathi, A. C., Rajarathinam, S. X., Sadiq, A. M., & Rajeshkumar, S. (2020). Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. Journal of Drug Delivery Science and Technology, 55, 101376. https://doi.org/10.1016/j.jddst.2019.101376
  • Han, F., Lv, S., Li, Z., Jin, L., Fan, B., Zhang, J., ... & Li, J. (2020). Triple-synergistic 2D material-based dual-delivery antibiotic platform. NPG Asia Materials, 12(1), 1-11. https://doi.org/10.1038/s41427-020-0195-x
  • Hatipoğlu, A. (2021). Abelmoschus esculentus yaprağı kullanılarak gümüş nanopartiküllerin yeşil sentezi ve bazı gıda patojenleri üzerindeki antimikrobiyal etkileri. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 22(2), 239-246. https://doi.org/10.17474/artvinofd.971246
  • Havva, A. T. A. R., & Çölgeçen, H. Gümüş Nanopartiküllerinin Biyosentezi ve Biyosensör Materyali Olarak Kullanımı. Commagene Journal of Biology, 5(2). https://doi.org/10.31594/commagene.941022
  • Islam, M. A., Jacob, M. V., & Antunes, E. (2021). A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. Journal of Environmental Management, 281, 111918. https://doi.org/10.1016/j.jenvman.2020.111918
  • Johari, S. A., Kalbassi, M. R., Soltani, M., & Yu, I. J. (2013). Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss). http://hdl.handle.net/1834/11597
  • Kamaraj, C., Balasubramani, G., Siva, C., Raja, M., Balasubramanian, V., Raja, R. K., ... & Perumal, P. (2017). Ag nanoparticles synthesized using β-caryophyllene isolated from Murraya koenigii: antimalarial (Plasmodium falciparum 3D7) and anticancer activity (A549 and HeLa cell lines). Journal of Cluster Science, 28(3), 1667-1684. https://doi.org/10.1007/s10876-017-1180-6
  • Kora, A. J., Mounika, J., & Jagadeeshwar, R. (2020). Rice leaf extract synthesized silver nanoparticles: An in vitro fungicidal evaluation against Rhizoctonia solani, the causative agent of sheath blight disease in rice. Fungal Biology, 124(7), 671-681. https://doi.org/10.1016/j.funbio.2020.03.012
  • Lee, S. H., & Jun, B. H. (2019). Silver nanoparticles: synthesis and application for nanomedicine. International journal of molecular sciences, 20(4), 865.https://doi.org/10.3390/ijms20040865
  • Silva, S. L., Fernández-Luqueño, F., & López-Valdez, F. ``Silver Nanoparticles (AgNP) in the Environment: a Review of Potential Risks on Human and Environmental Health``September 2016. Water Air and Soil Pollution, 227(9), 1-20. https://doi.org/10.1007/s11270-016-3022-9
  • Massarsky, A., Abraham, R., Nguyen, K. C., Rippstein, P., Tayabali, A. F., Trudeau, V. L., & Moon, T. W. (2014). Nanosilver cytotoxicity in rainbow trout (Oncorhynchus mykiss) erythrocytes and hepatocytes. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 159, 10-21. https://doi.org/10.1016/j.cbpc.2013.09.008
  • Nogueira, S. S., de Araujo-Nobre, A. R., Mafud, A. C., Guimarães, M. A., Alves, M. M. M., Plácido, A., ... & Cardoso, V. S. (2019). Silver nanoparticle stabilized by hydrolyzed collagen and natural polymers: Synthesis, characterization and antibacterial-antifungal evaluation. International journal of biological macromolecules, 135, 808-814. https://doi.org/10.1016/j.ijbiomac.2019.05.214
  • Okaiyeto, K., Hoppe, H., & Okoh, A. I. (2021). Plant-based synthesis of silver nanoparticles using aqueous leaf extract of Salvia officinalis: characterization and its antiplasmodial activity. Journal of Cluster Science, 32(1), 101-109 https://doi.org/10.1007/s10876-020-01766-y
  • Okaiyeto, K., Ojemaye, M. O., Hoppe, H., Mabinya, L. V., & Okoh, A. I. (2019). Phytofabrication of silver/silver chloride nanoparticles using aqueous leaf extract of Oedera genistifolia: Characterization and antibacterial potential. Molecules, 24(23), 4382. https://doi.org/10.3390/molecules24234382
  • Orellana EA, Kasinski AL. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio-protocol 2016; 6(21): e1984. https://doi.org/10.21769/BioProtoc.1984
  • Petit Y, Galleani G, Raffy G, Desmoulin JC, Jubera V, Del Guerzo A, ... & Cardinal, T. (2021). Three-dimensional high spatial localization of efficient resonant energy transfer from laser-assisted precipitated silver clusters to trivalent Europium ions. Crystals, 11(2), 148. https://doi.org/10.3390/cryst11020148
  • Sezgin¹, Y., Çetin¹, M. B., İşeri, Ö. D., Terzi, Y. K., Özlem, N., & Alptekin¹, Ş. B. Farklı Resveratrol Konsantrasyonlarının Gingival Fibroblastlardaki Hücre Canlılığına Etkisi. Ege Üniversitesi Diş Hekimliği Fakültesi Dergisi, 40(3), 147-152. https://doi.org/10.5505/eudfd.2019.60565
  • Shahriary, M., Veisi, H., Hekmati, M., & Hemmati, S. (2018). In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Materials Science and Engineering: C, 90, 57-66. https://doi.org/10.1016/j.msec.2018.04.044
  • Srivastava, S., Usmani, Z., Atanasov, A. G., Singh, V. K., Singh, N. P., Abdel-Azeem, A. M., ... & Bhargava, A. (2021). Biological nanofactories: using living forms for metal nanoparticle synthesis. Mini Reviews in Medicinal Chemistry, 21(2), 245-265. https://doi.org/10.2174/1389557520999201116163012
  • Tao, H., Wu, T., Aldeghi, M., Wu, T. C., Aspuru-Guzik, A., & Kumacheva, E. (2021). Nanoparticle synthesis assisted by machine learning. Nature Reviews Materials, 6(8), 701-716. https://doi.org/10.1038/s41578-021-00337-5
  • Ulaeto, S. B., Mathew, G. M., Pancrecious, J. K., Nair, J. B., Rajan, T. P. D., Maiti, K. K., & Pai, B. C. (2019). Biogenic Ag nanoparticles from neem extract: their structural evaluation and antimicrobial effects against Pseudomonas nitroreducens and Aspergillus unguis (NII 08123). ACS Biomaterials Science & Engineering, 6(1), 235-245. https://doi.org/10.1021/acsbiomaterials.9b01257
  • Adil, U. M. A. Z., Adil, K. O. Ç., Baran, M. F., Keskin, C., & Atalar, M. N. (2019). Hypericum Triquetrifolium Turra Bitkisinden Gümüş Nanopartiküllerin Sentezi, Karekterizasyonu ve Antimikrobial Etkinliğinin İncelenmesi. Journal of the Institute of Science and Technology, 9(3), 1467-1475. https://doi.org/10.21597/jist.533115
  • Velsankar, K., Preethi, R., Ram, P. S., Ramesh, M., & Sudhahar, S. (2020). Evaluations of biosynthesized Ag nanoparticles via Allium Sativum flower extract in biological applications. Applied Nanoscience, 10(9), 3675-3691. https://doi.org/10.1007/s13204-020-01463-2
  • Vevers, W. F., & Jha, A. N. (2008). Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology, 17(5), 410-420. https://doi.org/10.1007/s10646-008-0226-9
  • Vishai, V., & Kirtikara, K. (2006). Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc, 1(3), 1112-1116. https://doi.org/10.1038/nprot.2006.179

Gökkuşağı alabalığı gonad hücre hattı-2 (RTG-2) üzerinde Eruca vesicaria'dan elde edilen gümüş nanoparçacıkların sitotoksisitesi

Yıl 2022, , 1093 - 1101, 15.10.2022
https://doi.org/10.17714/gumusfenbil.1104370

Öz

Gümüş (Ag) nanoparçacıklarının gıda, ilaç, tarım gibi birçok sektörde artan kullanımı ekolojik çevre üzerinde toksik etkilere yol açmaktadır. Bu nedenle Ag nanoparçacık sentez yöntemlerinin neden olduğu toksisiteyi azaltmak için biyolojik sentez yöntemleri üzerinde çalışmalar yapılmaktadır. Bununla birlikte, balık hücre hatlarında biyosentezlenmiş Ag nanoparçacıklarının toksisitesi üzerine yapılan çalışmalar çok azdır. Bu çalışmanın amacı, Eruca vesicaria bitki özü ile Ag nanoparçacıklarının biyolojik sentezini gerçekleştirmek ve gökkuşağı alabalığı gonad hücre hattı-2'de (RTG 2) toksisitelerini incelemektir. E. vesicaria'dan elde edilen Ag nanoparçacıklarının karakterizasyonu UV-vis, TEM ve XRD ile yapılmıştır. Ag nanoparçacıklarının (100 µg/mL- 6,25 µg/mL) 24 saat boyunca RTG-2 hücresindeki toksisitesi sülforodamin B tahlili ile belirlendi. Küre, üçgen, küp ve 5-20 nm boyutlarında elde edilen Ag nanopartiküller, p≤0,001 seviyelerinde doza bağlı olarak RTG-2 balık hücreleri üzerinde önemli toksik etki göstermiştir. Bu çalışma, biyolojik sentez yoluyla elde edilen Ag nanoparçacıklarının balık hücre hatları üzerinde toksik etkisinin olduğunun kanıtlanması ve sentez yöntemlerinden ziyade Ag nanoparçacıklarının çevreye salınımını azaltacak çalışmalara ihtiyaç olduğunu göstermesi açısından önemlidir.

Kaynakça

  • Abbas, Q. M. S., Phull, A. R., Rafiq, M., Hassan, M., Lee, K. H., & Seo, S. Y. (2017). Green synthesis of silver nanoparticles using Bidens frondosa extract and their tyrosinase activity. Iranian Journal of Pharmaceutical Research: IJPR, 16(2), 763. PMID: 28979330
  • Alyousef, A. A., Arshad, M., AlAkeel, R., & Alqasim, A. (2019). Biogenic silver nanoparticles by Myrtus communis plant extract: biosynthesis, characterization and antibacterial activity. Biotechnology & Biotechnological Equipment, 33(1), 931-936. https://doi.org/10.1080/13102818.2019.1629840
  • Aritonang, H. F., Koleangan, H., & Wuntu, A. D. (2019). Synthesis of silver nanoparticles using aqueous extract of medicinal plants’(Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. International journal of microbiology, 2019. https://doi.org/10.1155/2019/8642303
  • Baghizadeh, A., Ranjbar, S., Gupta, V. K., Asif, M., Pourseyedi, S., Karimi, M. J., & Mohammadinejad, R. (2015). Green synthesis of silver nanoparticles using seed extract of Calendula officinalis in liquid phase. Journal of molecular liquids, 207, 159-163. https://doi.org/10.1016/j.molliq.2015.03.029
  • Balachandar, R., Gurumoorthy, P., Karmegam, N., Barabadi, H., Subbaiya, R., Anand, K., ... & Saravanan, M. (2019). Plant-mediated synthesis, characterization and bactericidal potential of emerging silver nanoparticles using stem extract of Phyllanthus pinnatus: a recent advance in phytonanotechnology. Journal of Cluster Science, 30(6), 1481-1488. https://doi.org/10.1007/s10876-019-01591-y
  • Baran, A., Baran, M. F., Keskin, C., Kandemir, S. I., Valiyeva, M., Mehraliyeva, S., ... & Eftekhari, A. (2021). Ecofriendly/Rapid synthesis of silver nanoparticles using extract of waste parts of artichoke (cynara scolymus L.) and evaluation of their cytotoxic and antibacterial activities. Journal of Nanomaterials, 2021. https://doi.org/10.1155/2021/2270472
  • Baran, A., Fırat Baran, M., Keskin, C., Hatipoğlu, A., Yavuz, Ö., İrtegün Kandemir, S., ... & Eftekhari, A. (2022). Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from Cicer arietinum L. green leaf extract. Frontiers in Bioengineering and Biotechnology, 263. https://doi.org/10.3389/fbioe.2022.855136
  • Behravan, M., Panahi, A. H., Naghizadeh, A., Ziaee, M., Mahdavi, R., & Mirzapour, A. (2019). Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International journal of biological macromolecules, 124, 148-154. https://doi.org/10.1016/j.ijbiomac.2018.11.101
  • Bélteky, P., Rónavári, A., Igaz, N., Szerencsés, B., Tóth, I. Y., Pfeiffer, I., ... & Kónya, Z. (2019). Silver nanoparticles: Aggregation behavior in biorelevant conditions and its impact on biological activity. International journal of nanomedicine, 14, 667. https://doi.org/10.2147/IJN.S185965
  • Bermejo-Nogales, A., Fernández-Cruz, M. L., & Navas, J. M. (2017). Fish cell lines as a tool for the ecotoxicity assessment and ranking of engineered nanomaterials. Regulatory Toxicology and Pharmacology, 90, 297-307. https://doi.org/10.1016/j.yrtph.2017.09.029
  • Caminada D, Escher C & Fent, K. (2006). Cytotoxicity of pharmaceuticals found in aquatic systems: Comparison of PLHC-1 and RTG-2 fish cell lines. Aquatic Toxicology, 79(2), 114–123. https://doi.org/10.1016/j.aquatox.2006.05.010
  • Carmona, E. R., Benito, N., Plaza, T., & Recio-Sánchez, G. (2017). Green synthesis of silver nanoparticles by using leaf extracts from the endemic Buddleja globosa hope. Green Chemistry Letters and Reviews, 10(4), 250-256. https://doi.org/10.1080/17518253.2017.1360400
  • Connolly, M., Fernandez-Cruz, M. L., Quesada-Garcia, A., Alte, L., Segner, H., & Navas, J. M. (2015). Comparative cytotoxicity study of silver nanoparticles (AgNPs) in a variety of rainbow trout cell lines (RTL-W1, RTH-149, RTG-2) and primary hepatocytes. International journal of environmental research and public health, 12(5), 5386-5405. https://doi.org/10.3390/ijerph120505386
  • de Aragão, A. P., de Oliveira, T. M., Quelemes, P. V., Perfeito, M. L. G., Araújo, M. C., Santiago, J., ... & Quaresma, P. (2016). JR de Souza de Almeida Leite, DA da Silva, Green synthesis of silver nanoparticles using the seaweed gracilaria birdiae and their antibacterial activity. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2016.04.014
  • de Jesús Ruíz-Baltazar, Á., Reyes-López, S. Y., de Lourdes Mondragón-Sánchez, M., Estevez, M., Hernández-Martinez, A. R., & Pérez, R. (2018). Biosynthesis of Ag nanoparticles using Cynara cardunculus leaf extract: evaluation of their antibacterial and electrochemical activity. Results in Physics, 11, 1142-1149. https://doi.org/10.1016/j.rinp.2018.11.032
  • Demir, V., Bucher, J., Kropf, C., Arenz, M., & Segner, H. (2020). Comparative study of cytotoxicity by platinum nanoparticles and ions in vitro systems based on fish cell lines. Toxicology in vitro, 66, 104859. https://doi.org/10.1016/j.tiv.2020.104859
  • Du, J., Tang, J., Xu, S., Ge, J., Dong, Y., Li, H., & Jin, M. (2018). A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms. Regulatory Toxicology and Pharmacology, 98, 231-239. https://doi.org/10.1016/j.yrtph.2018.08.003
  • Onur, D. U. R. A., Tülek, A., Sönmez, İ., Erdoğuş, F.D., Yeşilayer, A., & Kepenekci, İ. (2019). Lantana camara L.(Lamiales: Verbenaceae)'nın sulu ekstraktı kullanılarak hazırlanan gümüş nanopartikül (AgNPs) uygulamalarının Buğday gal nematodu [Anguina tritici Thorne, 1949 (Nematoda: Anguinidae)]’na etkileri. Bitki Koruma Bülteni, 59(2), 49-53. https://doi.org/10.16955/bitkorb.485072
  • Farkas, J., Christian, P., Urrea, J. A. G., Roos, N., Hassellöv, M., Tollefsen, K. E., & Thomas, K. V. (2010). Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology, 96(1), 44-52. https://doi.org/10.1016/j.aquatox.2009.09.016
  • fırat BARAN, M. (2019). Prunus avium kiraz yaprağı özütü ile gümüş nanopartikül (AgNP) sentezi ve antimikrobiyal etkisinin incelenmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10(1), 221-227. https://doi.org/10.24012/dumf.487255
  • Gamboa, S. M., Rojas, E. R., Martínez, V. V., & Vega-Baudrit, J. (2019). Synthesis and characterization of silver nanoparticles and their application as an antibacterial agent. Int. J. Biosen. Bioelectron, 5, 166-173. https://doi.org/10.15406/ijbsbe.2019.05.00172
  • Gomathi, A. C., Rajarathinam, S. X., Sadiq, A. M., & Rajeshkumar, S. (2020). Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. Journal of Drug Delivery Science and Technology, 55, 101376. https://doi.org/10.1016/j.jddst.2019.101376
  • Han, F., Lv, S., Li, Z., Jin, L., Fan, B., Zhang, J., ... & Li, J. (2020). Triple-synergistic 2D material-based dual-delivery antibiotic platform. NPG Asia Materials, 12(1), 1-11. https://doi.org/10.1038/s41427-020-0195-x
  • Hatipoğlu, A. (2021). Abelmoschus esculentus yaprağı kullanılarak gümüş nanopartiküllerin yeşil sentezi ve bazı gıda patojenleri üzerindeki antimikrobiyal etkileri. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 22(2), 239-246. https://doi.org/10.17474/artvinofd.971246
  • Havva, A. T. A. R., & Çölgeçen, H. Gümüş Nanopartiküllerinin Biyosentezi ve Biyosensör Materyali Olarak Kullanımı. Commagene Journal of Biology, 5(2). https://doi.org/10.31594/commagene.941022
  • Islam, M. A., Jacob, M. V., & Antunes, E. (2021). A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. Journal of Environmental Management, 281, 111918. https://doi.org/10.1016/j.jenvman.2020.111918
  • Johari, S. A., Kalbassi, M. R., Soltani, M., & Yu, I. J. (2013). Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss). http://hdl.handle.net/1834/11597
  • Kamaraj, C., Balasubramani, G., Siva, C., Raja, M., Balasubramanian, V., Raja, R. K., ... & Perumal, P. (2017). Ag nanoparticles synthesized using β-caryophyllene isolated from Murraya koenigii: antimalarial (Plasmodium falciparum 3D7) and anticancer activity (A549 and HeLa cell lines). Journal of Cluster Science, 28(3), 1667-1684. https://doi.org/10.1007/s10876-017-1180-6
  • Kora, A. J., Mounika, J., & Jagadeeshwar, R. (2020). Rice leaf extract synthesized silver nanoparticles: An in vitro fungicidal evaluation against Rhizoctonia solani, the causative agent of sheath blight disease in rice. Fungal Biology, 124(7), 671-681. https://doi.org/10.1016/j.funbio.2020.03.012
  • Lee, S. H., & Jun, B. H. (2019). Silver nanoparticles: synthesis and application for nanomedicine. International journal of molecular sciences, 20(4), 865.https://doi.org/10.3390/ijms20040865
  • Silva, S. L., Fernández-Luqueño, F., & López-Valdez, F. ``Silver Nanoparticles (AgNP) in the Environment: a Review of Potential Risks on Human and Environmental Health``September 2016. Water Air and Soil Pollution, 227(9), 1-20. https://doi.org/10.1007/s11270-016-3022-9
  • Massarsky, A., Abraham, R., Nguyen, K. C., Rippstein, P., Tayabali, A. F., Trudeau, V. L., & Moon, T. W. (2014). Nanosilver cytotoxicity in rainbow trout (Oncorhynchus mykiss) erythrocytes and hepatocytes. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 159, 10-21. https://doi.org/10.1016/j.cbpc.2013.09.008
  • Nogueira, S. S., de Araujo-Nobre, A. R., Mafud, A. C., Guimarães, M. A., Alves, M. M. M., Plácido, A., ... & Cardoso, V. S. (2019). Silver nanoparticle stabilized by hydrolyzed collagen and natural polymers: Synthesis, characterization and antibacterial-antifungal evaluation. International journal of biological macromolecules, 135, 808-814. https://doi.org/10.1016/j.ijbiomac.2019.05.214
  • Okaiyeto, K., Hoppe, H., & Okoh, A. I. (2021). Plant-based synthesis of silver nanoparticles using aqueous leaf extract of Salvia officinalis: characterization and its antiplasmodial activity. Journal of Cluster Science, 32(1), 101-109 https://doi.org/10.1007/s10876-020-01766-y
  • Okaiyeto, K., Ojemaye, M. O., Hoppe, H., Mabinya, L. V., & Okoh, A. I. (2019). Phytofabrication of silver/silver chloride nanoparticles using aqueous leaf extract of Oedera genistifolia: Characterization and antibacterial potential. Molecules, 24(23), 4382. https://doi.org/10.3390/molecules24234382
  • Orellana EA, Kasinski AL. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio-protocol 2016; 6(21): e1984. https://doi.org/10.21769/BioProtoc.1984
  • Petit Y, Galleani G, Raffy G, Desmoulin JC, Jubera V, Del Guerzo A, ... & Cardinal, T. (2021). Three-dimensional high spatial localization of efficient resonant energy transfer from laser-assisted precipitated silver clusters to trivalent Europium ions. Crystals, 11(2), 148. https://doi.org/10.3390/cryst11020148
  • Sezgin¹, Y., Çetin¹, M. B., İşeri, Ö. D., Terzi, Y. K., Özlem, N., & Alptekin¹, Ş. B. Farklı Resveratrol Konsantrasyonlarının Gingival Fibroblastlardaki Hücre Canlılığına Etkisi. Ege Üniversitesi Diş Hekimliği Fakültesi Dergisi, 40(3), 147-152. https://doi.org/10.5505/eudfd.2019.60565
  • Shahriary, M., Veisi, H., Hekmati, M., & Hemmati, S. (2018). In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Materials Science and Engineering: C, 90, 57-66. https://doi.org/10.1016/j.msec.2018.04.044
  • Srivastava, S., Usmani, Z., Atanasov, A. G., Singh, V. K., Singh, N. P., Abdel-Azeem, A. M., ... & Bhargava, A. (2021). Biological nanofactories: using living forms for metal nanoparticle synthesis. Mini Reviews in Medicinal Chemistry, 21(2), 245-265. https://doi.org/10.2174/1389557520999201116163012
  • Tao, H., Wu, T., Aldeghi, M., Wu, T. C., Aspuru-Guzik, A., & Kumacheva, E. (2021). Nanoparticle synthesis assisted by machine learning. Nature Reviews Materials, 6(8), 701-716. https://doi.org/10.1038/s41578-021-00337-5
  • Ulaeto, S. B., Mathew, G. M., Pancrecious, J. K., Nair, J. B., Rajan, T. P. D., Maiti, K. K., & Pai, B. C. (2019). Biogenic Ag nanoparticles from neem extract: their structural evaluation and antimicrobial effects against Pseudomonas nitroreducens and Aspergillus unguis (NII 08123). ACS Biomaterials Science & Engineering, 6(1), 235-245. https://doi.org/10.1021/acsbiomaterials.9b01257
  • Adil, U. M. A. Z., Adil, K. O. Ç., Baran, M. F., Keskin, C., & Atalar, M. N. (2019). Hypericum Triquetrifolium Turra Bitkisinden Gümüş Nanopartiküllerin Sentezi, Karekterizasyonu ve Antimikrobial Etkinliğinin İncelenmesi. Journal of the Institute of Science and Technology, 9(3), 1467-1475. https://doi.org/10.21597/jist.533115
  • Velsankar, K., Preethi, R., Ram, P. S., Ramesh, M., & Sudhahar, S. (2020). Evaluations of biosynthesized Ag nanoparticles via Allium Sativum flower extract in biological applications. Applied Nanoscience, 10(9), 3675-3691. https://doi.org/10.1007/s13204-020-01463-2
  • Vevers, W. F., & Jha, A. N. (2008). Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology, 17(5), 410-420. https://doi.org/10.1007/s10646-008-0226-9
  • Vishai, V., & Kirtikara, K. (2006). Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc, 1(3), 1112-1116. https://doi.org/10.1038/nprot.2006.179
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Semra Çiçek 0000-0002-2927-2793

Yayımlanma Tarihi 15 Ekim 2022
Gönderilme Tarihi 15 Nisan 2022
Kabul Tarihi 30 Ağustos 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Çiçek, S. (2022). Cytotoxicity of silver nanoparticles obtained from Eruca vesicaria on rainbow trout gonad cell line-2 (RTG-2). Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(4), 1093-1101. https://doi.org/10.17714/gumusfenbil.1104370