Araştırma Makalesi
BibTex RIS Kaynak Göster

Treatment of mixed dye wastewater by peroxy-coagulation using stainless steel and graphite electrodes

Yıl 2023, , 491 - 499, 15.04.2023
https://doi.org/10.17714/gumusfenbil.1219165

Öz

Most of the dyed wastewater is toxic and carcinogenic to living things. Due to their complex structure, they are very difficult to treat with traditional purification methods. Various electrochemical methods have been developed to treat dyed wastewater. In this study, color and COD removal from synthetic wastewater formed by mixed dyes was investigated using peroxy-coagulation method. Stainless steel and graphite electrodes were used as anode and cathode, respectively. The effects of basic operating parameters such as initial pH, current density and electrolysis time were investigated. Taguchi experimental design method (L9) orthogonal array (OA) was applied to examine the effects of the parameters on the electrochemical system. The performance of the system, Signal-to-noise (S/N) ratio (the larger the better) and analysis of variance (ANOVA) were evaluated to compare the relative magnitude of the effect of factors on the response value. Optimum operating conditions were found as initial pH 3, current 100 mA and reaction time 60 minutes. Under these conditions, over 99% color removal and 95% COD removal were achieved, and the total energy consumption was calculated as approximately 25 kWh/kgCOD.

Kaynakça

  • Bhagawati, P. B., & Shivayogimath, C. B. (2021). Electrochemical technique for paper mill effluent degradation using concentric aluminum tube electrodes (CATE). Journal of Environmental Health Science and Engineering, 19(1), 553-564. https://doi.org/10.1007/s40201-021-00627-8
  • Davila, J. A., Machuca, F., & Marrianga, N. (2011). Treatment of vinasses by electrocoagulation–electroflotation using the Taguchi method. Electrochimica Acta, 56(22), 7433-7436. https://doi.org/10.1016/j.electacta.2011.07.015
  • do Vale-Júnior. E.. da Silva. D. R.. Fajardo. A. S.. & Martínez-Huitle. C. A. (2018). Treatment of an azo dye effluent by peroxi-coagulation and its comparison to traditional electrochemical advanced processes. Chemosphere, 204. 548-555. https://doi.org/10.1016/j.chemosphere.2018.04.007
  • Nidheesh, P. V. (2018). Removal of organic pollutants by peroxicoagulation. Environmental Chemistry Letters, 16(4), 1283-1292. https://doi.org/10.1007/s10311-018-0752-5
  • Ghanbari. F.. & Moradi. M. (2015). A comparative study of electrocoagulation. electrochemical Fenton. electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: electrical energy consumption and biodegradability improvement. Journal of Environmental Chemical Engineering, 3(1). 499-506. https://doi.org/10.1016/j.jece.2014.12.018
  • Kumar. A.. Nidheesh. P. V.. & Kumar. M. S. (2018). Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes. Chemosphere, 205. 587-593. https://doi.org/10.1016/j.chemosphere.2018.04.141
  • Mythilishri. R.. Kamalakannan. V. P.. Saravanathamizhan. R.. & Balasubramanian. N. (2021). Kinetic and residence time distribution modeling of tubular electrochemical reactor: analysis of results using Taguchi method. Water Practice and Technology, 16(1). 108-116. https://doi.org/10.2166/wpt.2020.101
  • Nayebi. B.. Ghalebizade. M.. & Niavol. K. P. (2021). Removal of Acid Red 131 by Peroxi-Coagulation Using Stainless Steel and Aluminum Electrodes: a Comparative Study. Water Conservation Science and Engineering, 6(4). 201-211. https://doi.org/10.1007/s41101-021-00114-z
  • Nidheesh. P. V.. Zhou. M.. & Oturan. M. A. (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197. 210-227. https://doi.org/10.1016/j.chemosphere.2017.12.195
  • Salari, D., Niaei, A., Khataee, A., & Zarei, M. (2009). Electrochemical treatment of dye solution containing CI Basic Yellow 2 by the peroxi-coagulation method and modeling of experimental results by artificial neural networks. Journal of Electroanalytical Chemistry, 629(1-2), 117-125. https://doi.org/10.1016/j.jelechem.2009.02.002
  • Pekey. H. (2016). Evaluation of electrochemical peroxidation (ECP) process variables for removal of co-complex dye using a central composite design. Desalination and Water Treatment, 57(21). 9845-9858. https://doi.org/10.1080/19443994.2015.1033466
  • Rajkumar. D.. & Palanivelu. K. (2004). Electrochemical treatment of industrial wastewater. Journal of hazardous materials, 113(1-3). 123-129. https://doi.org/10.1016/j.jhazmat.2004.05.039
  • Ren, G., Zhou, M., Su, P., Liang, L., Yang, W., & Mousset, E. (2018). Highly energy-efficient removal of acrylonitrile by peroxi-coagulation with modified graphite felt cathode: influence factors, possible mechanism. Chemical Engineering Journal, 343, 467-476. https://doi.org/10.1016/j.cej.2018.02.115
  • Ren. G.. Zhou. M.. Zhang. Q.. Xu. X.. Li. Y.. Su. P.. ... & Bouzek. K. (2019). Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load. Water research, 154. 336-348. https://doi.org/10.1016/j.watres.2019.02.013 Rodríguez-Narváez, O. M., Picos, A. R., Bravo-Yumi, N., Pacheco-Alvarez, M., Martínez-Huitle, C. A., & Peralta-Hernández, J. M. (2021). Electrochemical oxidation technology to treat textile wastewaters. Current Opinion in Electrochemistry, 29, 100806.
  • Venu. D.. Gandhimathi. R.. Nidheesh. P. V.. & Ramesh. S. T. (2016). Effect of solution pH on leachate treatment mechanism of peroxicoagulation process. Journal of Hazardous. Toxic. and Radioactive Waste, 20(3). 06016001.
  • Zarei. M.. Niaei. A.. Salari. D.. & Khataee. A. R. (2010). Removal of four dyes from aqueous medium by the peroxi-coagulation method using carbon nanotube–PTFE cathode and neural network modeling. Journal of electroanalytical chemistry, 639(1-2). 167-174. https://doi.org/10.1016/j.jelechem.2009.12.005
  • Zhou. X.. Hou. Z.. Lv. L.. Song. J.. & Yin. Z. (2020). Electro-Fenton with peroxi-coagulation as a feasible pre-treatment for high-strength refractory coke plant wastewater: Parameters optimization. removal behavior and kinetics analysis. Chemosphere, 238. 124649. https://doi.org/10.1016/j.jelechem.2009.12.005

Karışık boyalı atıksuların paslanmaz çelik ve grafit elektrotlar kullanarak peroksi-koagülasyon yöntemiyle arıtılması

Yıl 2023, , 491 - 499, 15.04.2023
https://doi.org/10.17714/gumusfenbil.1219165

Öz

Boyalı atıksuların çoğu canlılar için toksik ve kanserojendir. Karmaşık yapılarından dolayı geleneksel arıtma yöntemleriyle arıtılmaları oldukça güçtür. Boyalı atıksuları arıtmak için çeşitli elektrokimyasal yöntemler geliştirilmiştir. Bu çalışmada karışık boyaların oluşturduğu sentetik atıksudan renk ve KOİ giderimi peroksi-koagülasyon yöntemi kullanılarak incelenmiştir. Anot ve katot olarak sırasıyla paslanmaz çelik ve grafit elektrotlar kullanılmıştır. Başlangıç pH, akım yoğunluğu ve elektroliz süresi gibi temel işletme parametrelerinin etkisi incelenmiştir. Parametrelerin elektrokimyasal sistem üzerindeki etkilerini incelemek için Taguchi deneysel tasarım yöntemi (L9) orthogonal array (OA) uygulandı. Sistemin performansı, Sinyal/gürültü (S/N) oranı (ne kadar büyükse o kadar iyidir) ve varyans analizi (ANOVA), faktörlerin yanıt değeri üzerindeki etkisinin göreceli olarak büyüklüğünü karşılaştırmak için değerlendirildi. Optimum çalışma koşulları başlangıç pH’ı 3, akım 100 mA ve reaksiyon süresi 60 dakika olarak bulundu. Bu koşullarda %99’un üzerinde renk giderimi ve %95 KOİ giderimi elde edilmiş ve toplam enerji tüketimi yaklaşık 25 kWh/kgKOİ olarak hesaplanmıştır.

Kaynakça

  • Bhagawati, P. B., & Shivayogimath, C. B. (2021). Electrochemical technique for paper mill effluent degradation using concentric aluminum tube electrodes (CATE). Journal of Environmental Health Science and Engineering, 19(1), 553-564. https://doi.org/10.1007/s40201-021-00627-8
  • Davila, J. A., Machuca, F., & Marrianga, N. (2011). Treatment of vinasses by electrocoagulation–electroflotation using the Taguchi method. Electrochimica Acta, 56(22), 7433-7436. https://doi.org/10.1016/j.electacta.2011.07.015
  • do Vale-Júnior. E.. da Silva. D. R.. Fajardo. A. S.. & Martínez-Huitle. C. A. (2018). Treatment of an azo dye effluent by peroxi-coagulation and its comparison to traditional electrochemical advanced processes. Chemosphere, 204. 548-555. https://doi.org/10.1016/j.chemosphere.2018.04.007
  • Nidheesh, P. V. (2018). Removal of organic pollutants by peroxicoagulation. Environmental Chemistry Letters, 16(4), 1283-1292. https://doi.org/10.1007/s10311-018-0752-5
  • Ghanbari. F.. & Moradi. M. (2015). A comparative study of electrocoagulation. electrochemical Fenton. electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: electrical energy consumption and biodegradability improvement. Journal of Environmental Chemical Engineering, 3(1). 499-506. https://doi.org/10.1016/j.jece.2014.12.018
  • Kumar. A.. Nidheesh. P. V.. & Kumar. M. S. (2018). Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes. Chemosphere, 205. 587-593. https://doi.org/10.1016/j.chemosphere.2018.04.141
  • Mythilishri. R.. Kamalakannan. V. P.. Saravanathamizhan. R.. & Balasubramanian. N. (2021). Kinetic and residence time distribution modeling of tubular electrochemical reactor: analysis of results using Taguchi method. Water Practice and Technology, 16(1). 108-116. https://doi.org/10.2166/wpt.2020.101
  • Nayebi. B.. Ghalebizade. M.. & Niavol. K. P. (2021). Removal of Acid Red 131 by Peroxi-Coagulation Using Stainless Steel and Aluminum Electrodes: a Comparative Study. Water Conservation Science and Engineering, 6(4). 201-211. https://doi.org/10.1007/s41101-021-00114-z
  • Nidheesh. P. V.. Zhou. M.. & Oturan. M. A. (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197. 210-227. https://doi.org/10.1016/j.chemosphere.2017.12.195
  • Salari, D., Niaei, A., Khataee, A., & Zarei, M. (2009). Electrochemical treatment of dye solution containing CI Basic Yellow 2 by the peroxi-coagulation method and modeling of experimental results by artificial neural networks. Journal of Electroanalytical Chemistry, 629(1-2), 117-125. https://doi.org/10.1016/j.jelechem.2009.02.002
  • Pekey. H. (2016). Evaluation of electrochemical peroxidation (ECP) process variables for removal of co-complex dye using a central composite design. Desalination and Water Treatment, 57(21). 9845-9858. https://doi.org/10.1080/19443994.2015.1033466
  • Rajkumar. D.. & Palanivelu. K. (2004). Electrochemical treatment of industrial wastewater. Journal of hazardous materials, 113(1-3). 123-129. https://doi.org/10.1016/j.jhazmat.2004.05.039
  • Ren, G., Zhou, M., Su, P., Liang, L., Yang, W., & Mousset, E. (2018). Highly energy-efficient removal of acrylonitrile by peroxi-coagulation with modified graphite felt cathode: influence factors, possible mechanism. Chemical Engineering Journal, 343, 467-476. https://doi.org/10.1016/j.cej.2018.02.115
  • Ren. G.. Zhou. M.. Zhang. Q.. Xu. X.. Li. Y.. Su. P.. ... & Bouzek. K. (2019). Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load. Water research, 154. 336-348. https://doi.org/10.1016/j.watres.2019.02.013 Rodríguez-Narváez, O. M., Picos, A. R., Bravo-Yumi, N., Pacheco-Alvarez, M., Martínez-Huitle, C. A., & Peralta-Hernández, J. M. (2021). Electrochemical oxidation technology to treat textile wastewaters. Current Opinion in Electrochemistry, 29, 100806.
  • Venu. D.. Gandhimathi. R.. Nidheesh. P. V.. & Ramesh. S. T. (2016). Effect of solution pH on leachate treatment mechanism of peroxicoagulation process. Journal of Hazardous. Toxic. and Radioactive Waste, 20(3). 06016001.
  • Zarei. M.. Niaei. A.. Salari. D.. & Khataee. A. R. (2010). Removal of four dyes from aqueous medium by the peroxi-coagulation method using carbon nanotube–PTFE cathode and neural network modeling. Journal of electroanalytical chemistry, 639(1-2). 167-174. https://doi.org/10.1016/j.jelechem.2009.12.005
  • Zhou. X.. Hou. Z.. Lv. L.. Song. J.. & Yin. Z. (2020). Electro-Fenton with peroxi-coagulation as a feasible pre-treatment for high-strength refractory coke plant wastewater: Parameters optimization. removal behavior and kinetics analysis. Chemosphere, 238. 124649. https://doi.org/10.1016/j.jelechem.2009.12.005
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Dilek Gümüş 0000-0001-7665-3057

Yayımlanma Tarihi 15 Nisan 2023
Gönderilme Tarihi 14 Aralık 2022
Kabul Tarihi 7 Nisan 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Gümüş, D. (2023). Karışık boyalı atıksuların paslanmaz çelik ve grafit elektrotlar kullanarak peroksi-koagülasyon yöntemiyle arıtılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(2), 491-499. https://doi.org/10.17714/gumusfenbil.1219165