Araştırma Makalesi
BibTex RIS Kaynak Göster

In-silico study for whole-body PEMF device effect in rats

Yıl 2024, , 313 - 324, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1323633

Öz

Pulsed electromagnetic field (PEMF) stimulation is a non-invasive therapeutic modality that has been employed in a variety of applications, including skin wound healing, tissue regeneration, blood vessel regeneration, repair of nonunion bone fractures, and dental treatment. Currently, the potential side effects of electromagnetic fields on tissues have not been comprehensively explored, despite their established therapeutic benefits. In this study, we examined the side effects of PEMF devices on whole-body tissues using simulations. The electromagnetic field simulation software CST Studio Suite was utilized, and an RF coil that could output different frequencies (100 Hz, 100 kHz, and 27 MHz) and magnetic fields (0.25 mT, 0.5, and 1 mT) was designed for the purpose of simulations. A realistic rat model, available from the CST library, was employed. Using the Debye equations according to the relevant frequency value, the electrical and thermal properties of the rat were calculated, and the simulation was carried out in two stages: EM and thermal analysis. The specific absorption rate in the tissues with EM simulation and the temperature distribution in the tissues with thermal analysis were examined. The effects created by the PEMF device at different frequencies and magnetic field intensities were presented comparatively. According to the results, the highest SAR value was observed for three different magnetic field intensities at a frequency of 27 MHz, resulting in a temperature difference of 0.7 °C. This study aims to determine the EM effects on rats in a simulated environment according to different frequencies and magnetic field values, as well as to determine whether the thermal effects created can produce a side response. By doing so, it will be possible to improve noninvasive clinical PEMF devices and provide additional information about the interaction of electromagnetic fields with tissues.

Kaynakça

  • Abel, E. L., Hendrix, S. L., Mcneeley, G. S., O’leary, E. S., Mossavar-Rahmani, Y., Johnson, S. R., & Kruger, M. (2007). Use of electric blankets and association with prevalence of endometrial cancer. In European Journal of Cancer Prevention (Vol. 16). Lippincott Williams & Wilkins. http://journals.lww.com/eurjcancerprev.
  • Ahlbom, A., Day, N., Feychting, M., Roman, E., Skinner, J., Dockerty, J., Linet, M., McBride, M., Michaelis, J., Olsen, J. H., Tynes, T., & Verkasalo, P. K. (2000). A pooled analysis of magnetic fields and childhood leukaemia. British Journal of Cancer, 83(5), 692–698. https://doi.org/10.1054/bjoc.2000.1376.
  • Balanis, C. A. (n.d.). Antenna Theory Analysis and Design Third Edition. www.copyright.com.
  • Biermann, N., Sommerauer, L., Diesch, S., Koch, C., Jung, F., Kehrer, A., Prantl, L., & Taeger, C. D. (2020). The influence of pulsed electromagnetic field therapy (PEMFT) on cutaneous blood flow in healthy volunteers. Clinical Hemorheology and Microcirculation, 76(4), 495–501. https://doi.org/10.3233/CH-209224.
  • Ca, B. (1989). Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs). In Crit. Rev Biomed Eng (Vol. 17, Issue 5).
  • Choi, H. M. C., Cheing, A. K. K., Ng, G. Y. F., & Cheing, G. L. Y. (2018). Effects of pulsed electromagnetic field (PEMF) on the tensile biomechanical properties of diabetic wounds at different phases of healing. PLoS ONE, 13(1). https://doi.org/10.1371/journal.pone.0191074.
  • Choi, M. C., Cheung, K. K., Li, X., & Cheing, G. L. Y. (2016). Pulsed electromagnetic field (PEMF) promotes collagen fibre deposition associated with increased myofibroblast population in the early healing phase of diabetic wound. Archives of Dermatological Research, 308(1), 21–29. https://doi.org/10.1007/s00403-015-1604-9.
  • Lin, J.C. (2012). Electromagnetıc Fıelds In Bıologıcal Systems. CRC Press.
  • Feldman, D. S. (2018). The feasibility of using pulsatile electromagnetic fields (PEMFs) to enhance the regenerative ability of dermal biomaterial scaffolds. Journal of Functional Biomaterials, 9(4). https://doi.org/10.3390/jfb9040066.
  • Friedenberg, R., Metz, R., Mako, M., & Surmaczynska, B. (n.d.). Differential Plasma Insulin Response to Glucose and Glucagon Stimulation Following Ethanol Priming. http://diabetesjournals.org/diabetes/article-pdf/20/6/397/346316/20-6-397.pdf.
  • Huegel, J., Choi, D. S., Nuss, C. A., Minnig, M. C. C., Tucker, J. J., Kuntz, A. F., Waldorff, E. I., Zhang, N., Ryaby, J. T., & Soslowsky, L. J. (2018). Effects of pulsed electromagnetic field therapy at different frequencies and durations on rotator cuff tendon-to-bone healing in a rat model. Journal of Shoulder and Elbow Surgery, 27(3), 553–560. https://doi.org/10.1016/j.jse.2017.09.024.
  • Hug, K., & Röösli, M. (2012). Therapeutic effects of whole‐body devices applying pulsed electromagnetic fields (PEMF): A systematic literature review. Bioelectromagnetics, 33(2), 95-105.
  • Iwasa, K., & Reddi, A. H. (2018). Pulsed Electromagnetic Fields and Tissue Engineering of the Joints. In Tissue Engineering - Part B: Reviews (Vol. 24, Issue 2, pp. 144–154). Mary Ann Liebert Inc. https://doi.org/10.1089/ten.teb.2017.0294.
  • Jaermann, T., Suter, F., Osterwalder, D., & Luechinger, R. (2011). Measurement and analysis of electromagnetic fields of pulsed magnetic field therapy systems for private use. Journal of Radiological Protection, 31(1), 107–116. https://doi.org/10.1088/0952-4746/31/1/007.
  • Jeran, M., Zaffuto, S., Moratti, A., Bagnacani, M., & Cadossi, R. (1987). Pemf stimulation of skin ulcers of venous origin in humans preliminary report of a double blind study. Electromagnetic Biology and Medicine, 6(2), 181–188. https://doi.org/10.3109/15368378709027737.
  • Karaman, O., Gumusay, M., Demirci, E. A., & Kaya, A. (2018). Comparative assessment of pulsed electromagnetic fields (PEMF) and pulsed radio frequency energy (PRFE) on an in vitro wound healing model. International Journal of Applied Electromagnetics and Mechanics, 57(4), 427–437. https://doi.org/10.3233/JAE-170129.
  • Kim, J. Y., Lee, J. Y., Lee, J. W., Lee, S. K., Park, C. S., Yang, S. J., & Lee, Y. H. (2022). Evaluation of Atopic Dermatitis Improvement Caused by Low-Level, Low-Frequency Pulsed Electromagnetic Fields. Bioelectromagnetics, 43(4), 268–277. https://doi.org/10.1002/bem.22405.
  • Kleinerman, R. A., Tucker, M. A., Tarone, R. E., Abramson, D. H., Seddon, J. M., Stovall, M., Li, F. P., & Fraumeni, J. F. (2005). Risk of new cancers after radiotherapy in long-term survivors of retinoblastoma: An extended follow-up. Journal of Clinical Oncology, 23(10), 2272–2279. https://doi.org/10.1200/JCO.2005.05.054.
  • Kwan, R. L. C., Lu, S., Choi, H. M. C., Kloth, L. C., & Cheing, G. L. Y. (2019). Efficacy of biophysical energies on healing of diabetic skin wounds in cell studies and animal experimental models: A systematic review. In International Journal of Molecular Sciences (Vol. 20, Issue 2). MDPI AG. https://doi.org/10.3390/ijms20020368.
  • Lai-Chu Kwan, R., Wong, W.-C., Yip, S.-L., Chan, K.-L., Zheng, Y.-P., & Lai-Ying Cheing, G. (2015). Pulsed Electromagnetic Field Therapy Promotes Healing and Microcirculation of Chronic Diabetic Foot Ulcers: A Pilot Study.
  • Laqué-Rupérez, E., Ruiz-Gómez, M. J., De La Peña, L., Gil, L., & Martínez-Morillo, M. (2003). Methotrexate cytotoxicity on MCF-7 breast cancer cells is not altered by exposure to 25 Hz, 1.5 mT magnetic field and iron (III) chloride hexahydrate. Bioelectrochemistry, 60(1–2), 81–86. https://doi.org/10.1016/S1567-5394(03)00054-9.
  • Lee, J. W., Kim, J. Y., Lee, N. R., & Lee, Y. H. (2022). Effect of pulsed electromagnetic fields stimulation on ischemic skin model. Electromagnetic Biology and Medicine, 41(1), 15–24. https://doi.org/10.1080/15368378.2021.1963763.
  • Mahmood, A. I., Gharghan, S. K., Eldosoky, M. A., & Soliman, A. M. (2022). Near-field wireless power transfer used in biomedical implants: A comprehensive review. In IET Power Electronics (Vol. 15, Issue 16, pp. 1936–1955). John Wiley and Sons Inc. https://doi.org/10.1049/pel2.12351.
  • Markov, M. S. (2007). Expanding use of pulsed electromagnetic field therapies. Electromagnetic Biology and Medicine, 26(3), 257–274. https://doi.org/10.1080/15368370701580806.
  • Markov, M. S., Ryaby, J. T., & Waldorff, E. I. (n.d.). Pulsed Electromagnetic Fields for Clinical Applications.
  • Monache, S. D., Alessandro, R., Iorio, R., Gualtieri, G., & Colonna, R. (2008). Extremely low frequency electromagnetic fields (ELF-EMFs) induce invitro angiogenesis process in human endothelial cells. Bioelectromagnetics, 29(8), 640–648. https://doi.org/10.1002/bem.20430.
  • Mustafa, S., Abbosh, A. M., & Nguyen, P. T. (2014). Modeling human head tissues using fourth-order Debye model in convolution-based three-dimensional finite-difference time-domain. IEEE Transactions on Antennas and propagation, 62(3), 1354-1361.
  • Pena-Philippides, J. C., Yang, Y., Bragina, O., Hagberg, S., Nemoto, E., & Roitbak, T. (2014). Effect of Pulsed Electromagnetic Field (PEMF) on Infarct Size and Inflammation After Cerebral Ischemia in Mice. Translational Stroke Research, 5(4), 491–500. https://doi.org/10.1007/s12975-014-0334-1.
  • Peyman, A., Rezazadeh, A. A., & Gabriel, C. (2001). Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies. Physics in Medicine & Biology, 46(6), 1617.
  • Repacholi, M. (2012). Concern that “EMF” magnetic fields from power lines cause cancer. Science of the Total Environment, 426, 454–458. https://doi.org/10.1016/j.scitotenv.2012.03.030.
  • Rubin, C. T., Donahue,’, H. J., Rubin, J. E., & Mcleod’, K. J. (1993). Optimization of Electric Field Parameters for the Control of Bone Remodeling: Exploitation of an Indigenous Mechanism for the Prevention of Osteopenia. In Journal of Bone and Mineral Research (Vol. 8, Issue 2). Mary Ann Liebert, Inc., Publishers.
  • Schwab, S. M., Androjna, C., Waldorff, E. I., Ryaby, J. T., Moore, L. R., Midura, R. J., & Zborowski, M. (2016). Mechanical Stress on Suspended Cortical Bone Sample by Low Frequency Magnetic Field. IEEE Transactions on Magnetics, 52(7). https://doi.org/10.1109/TMAG.2016.2515069.
  • Sisken, B. F. (1996). Therapeutic aspects of electromagnetic fields for soft-tissue healing. Advances in Chemistry Series, 250, 283–285. https://doi.org/10.1021/ba-1995-0250.ch015.
  • Smith, R. A. (2003). IARC handbooks of cancer prevention, volume 7: Breast cancer screening. Breast Cancer Research, 5(4). https://doi.org/10.1186/bcr616.
  • Yang, H. J., Kim, R. Y., & Hwang, S. J. (2015). Pulsed electromagnetic fields enhance bone morphogenetic protein-2 dependent-bone regeneration. Tissue Engineering - Part A, 21(19–20), 2629–2637. https://doi.org/10.1089/ten.tea.2015.0032.

Sıçanlarda tüm vücut PEMF cihaz etkisi için in-silico çalışma

Yıl 2024, , 313 - 324, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1323633

Öz

Darbeli elektromanyetik alan (PEMF) stimülasyonu, cilt yara iyileşmesini, doku rejenerasyonu, kan damarı rejenerasyonu, kaynamayan kemik kırıklarının onarımı, dental tedavi gibi birçok uygulamada kullanılmaya başlanmış invazif olmayan bir terapötik modalitedir. Fakat bildiğimiz kadarıyla terapötik etkilerinin yanı sıra elektromanyetik alanın dokular üzerinde oluşturacağı olası yan etkiler detaylı olarak araştırılmamıştır. Bu çalışmada tüm vücut üzerinde kullanılan PEMF cihazlarının, dokular üzerinde oluşturacağı yan etkiler incelenmiştir. Simülasyonlar için elektromanyetik alan simülasyon yazılımı CST Studio Suite kullanılmıştır. Simülasyonlarda kullanılmak üzere farklı frekans (100 Hz, 100 kHz ve 27 MHz) ve farklı manyetik alan (0.25mT, 0.5mT ve 1mT) çıkışları verebilen RF bobini tasarlanmıştır. CST kütüphanesinde bulunan gerçekçi sıçan modeli kullanılmıştır. Simülasyonun gerçekçi bir ortamda yapılabilmesi için sıçan elektrik ve termal özellikleri ilgili frekans değerine göre Debye denklemleri aracılığıyla hesaplanmıştır. Simülasyon EM ve termal analiz olarak iki aşamada gerçekleştirilmiştir. EM simülasyon ile dokular üzerinde oluşan özgül soğurma oranı, termal analiz ile dokular üzerinde oluşan sıcaklık dağılımı incelenmiştir. Farklı frekans ve manyetik alan yoğunluk değerlerine göre PEMF cihazının oluşturduğu etkiler kıyaslamalı olarak sunulmuştur. Sonuçlara göre 27 MHz frekansında üç farklı manyetik alan yoğunluğu için de en yüksek SAR değeri oluşumu gözlemlenmiştir. Dolayısıyla en yüksek sıcaklık farkı 0.7 °C ile yine bu frekansta oluşmuştur. Bu çalışmanın amacı farklı frekans ve farklı manyetik alan değerlerine göre simülasyon ortamında (a) sıçan üzerinde oluşan EM etkilerini belirlemek ve (b) oluşturacağı termal etkilerin yan tepki üretip üretemeyeceğini belirlemektir. Bu sayede invazif olmayan klinik PEMF cihazlarının iyileştirilmeleri mümkün hale gelecek ve elektromanyetik alanların dokularla etkileşimi hakkında ek bilgi sağlayacaktır.

Kaynakça

  • Abel, E. L., Hendrix, S. L., Mcneeley, G. S., O’leary, E. S., Mossavar-Rahmani, Y., Johnson, S. R., & Kruger, M. (2007). Use of electric blankets and association with prevalence of endometrial cancer. In European Journal of Cancer Prevention (Vol. 16). Lippincott Williams & Wilkins. http://journals.lww.com/eurjcancerprev.
  • Ahlbom, A., Day, N., Feychting, M., Roman, E., Skinner, J., Dockerty, J., Linet, M., McBride, M., Michaelis, J., Olsen, J. H., Tynes, T., & Verkasalo, P. K. (2000). A pooled analysis of magnetic fields and childhood leukaemia. British Journal of Cancer, 83(5), 692–698. https://doi.org/10.1054/bjoc.2000.1376.
  • Balanis, C. A. (n.d.). Antenna Theory Analysis and Design Third Edition. www.copyright.com.
  • Biermann, N., Sommerauer, L., Diesch, S., Koch, C., Jung, F., Kehrer, A., Prantl, L., & Taeger, C. D. (2020). The influence of pulsed electromagnetic field therapy (PEMFT) on cutaneous blood flow in healthy volunteers. Clinical Hemorheology and Microcirculation, 76(4), 495–501. https://doi.org/10.3233/CH-209224.
  • Ca, B. (1989). Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs). In Crit. Rev Biomed Eng (Vol. 17, Issue 5).
  • Choi, H. M. C., Cheing, A. K. K., Ng, G. Y. F., & Cheing, G. L. Y. (2018). Effects of pulsed electromagnetic field (PEMF) on the tensile biomechanical properties of diabetic wounds at different phases of healing. PLoS ONE, 13(1). https://doi.org/10.1371/journal.pone.0191074.
  • Choi, M. C., Cheung, K. K., Li, X., & Cheing, G. L. Y. (2016). Pulsed electromagnetic field (PEMF) promotes collagen fibre deposition associated with increased myofibroblast population in the early healing phase of diabetic wound. Archives of Dermatological Research, 308(1), 21–29. https://doi.org/10.1007/s00403-015-1604-9.
  • Lin, J.C. (2012). Electromagnetıc Fıelds In Bıologıcal Systems. CRC Press.
  • Feldman, D. S. (2018). The feasibility of using pulsatile electromagnetic fields (PEMFs) to enhance the regenerative ability of dermal biomaterial scaffolds. Journal of Functional Biomaterials, 9(4). https://doi.org/10.3390/jfb9040066.
  • Friedenberg, R., Metz, R., Mako, M., & Surmaczynska, B. (n.d.). Differential Plasma Insulin Response to Glucose and Glucagon Stimulation Following Ethanol Priming. http://diabetesjournals.org/diabetes/article-pdf/20/6/397/346316/20-6-397.pdf.
  • Huegel, J., Choi, D. S., Nuss, C. A., Minnig, M. C. C., Tucker, J. J., Kuntz, A. F., Waldorff, E. I., Zhang, N., Ryaby, J. T., & Soslowsky, L. J. (2018). Effects of pulsed electromagnetic field therapy at different frequencies and durations on rotator cuff tendon-to-bone healing in a rat model. Journal of Shoulder and Elbow Surgery, 27(3), 553–560. https://doi.org/10.1016/j.jse.2017.09.024.
  • Hug, K., & Röösli, M. (2012). Therapeutic effects of whole‐body devices applying pulsed electromagnetic fields (PEMF): A systematic literature review. Bioelectromagnetics, 33(2), 95-105.
  • Iwasa, K., & Reddi, A. H. (2018). Pulsed Electromagnetic Fields and Tissue Engineering of the Joints. In Tissue Engineering - Part B: Reviews (Vol. 24, Issue 2, pp. 144–154). Mary Ann Liebert Inc. https://doi.org/10.1089/ten.teb.2017.0294.
  • Jaermann, T., Suter, F., Osterwalder, D., & Luechinger, R. (2011). Measurement and analysis of electromagnetic fields of pulsed magnetic field therapy systems for private use. Journal of Radiological Protection, 31(1), 107–116. https://doi.org/10.1088/0952-4746/31/1/007.
  • Jeran, M., Zaffuto, S., Moratti, A., Bagnacani, M., & Cadossi, R. (1987). Pemf stimulation of skin ulcers of venous origin in humans preliminary report of a double blind study. Electromagnetic Biology and Medicine, 6(2), 181–188. https://doi.org/10.3109/15368378709027737.
  • Karaman, O., Gumusay, M., Demirci, E. A., & Kaya, A. (2018). Comparative assessment of pulsed electromagnetic fields (PEMF) and pulsed radio frequency energy (PRFE) on an in vitro wound healing model. International Journal of Applied Electromagnetics and Mechanics, 57(4), 427–437. https://doi.org/10.3233/JAE-170129.
  • Kim, J. Y., Lee, J. Y., Lee, J. W., Lee, S. K., Park, C. S., Yang, S. J., & Lee, Y. H. (2022). Evaluation of Atopic Dermatitis Improvement Caused by Low-Level, Low-Frequency Pulsed Electromagnetic Fields. Bioelectromagnetics, 43(4), 268–277. https://doi.org/10.1002/bem.22405.
  • Kleinerman, R. A., Tucker, M. A., Tarone, R. E., Abramson, D. H., Seddon, J. M., Stovall, M., Li, F. P., & Fraumeni, J. F. (2005). Risk of new cancers after radiotherapy in long-term survivors of retinoblastoma: An extended follow-up. Journal of Clinical Oncology, 23(10), 2272–2279. https://doi.org/10.1200/JCO.2005.05.054.
  • Kwan, R. L. C., Lu, S., Choi, H. M. C., Kloth, L. C., & Cheing, G. L. Y. (2019). Efficacy of biophysical energies on healing of diabetic skin wounds in cell studies and animal experimental models: A systematic review. In International Journal of Molecular Sciences (Vol. 20, Issue 2). MDPI AG. https://doi.org/10.3390/ijms20020368.
  • Lai-Chu Kwan, R., Wong, W.-C., Yip, S.-L., Chan, K.-L., Zheng, Y.-P., & Lai-Ying Cheing, G. (2015). Pulsed Electromagnetic Field Therapy Promotes Healing and Microcirculation of Chronic Diabetic Foot Ulcers: A Pilot Study.
  • Laqué-Rupérez, E., Ruiz-Gómez, M. J., De La Peña, L., Gil, L., & Martínez-Morillo, M. (2003). Methotrexate cytotoxicity on MCF-7 breast cancer cells is not altered by exposure to 25 Hz, 1.5 mT magnetic field and iron (III) chloride hexahydrate. Bioelectrochemistry, 60(1–2), 81–86. https://doi.org/10.1016/S1567-5394(03)00054-9.
  • Lee, J. W., Kim, J. Y., Lee, N. R., & Lee, Y. H. (2022). Effect of pulsed electromagnetic fields stimulation on ischemic skin model. Electromagnetic Biology and Medicine, 41(1), 15–24. https://doi.org/10.1080/15368378.2021.1963763.
  • Mahmood, A. I., Gharghan, S. K., Eldosoky, M. A., & Soliman, A. M. (2022). Near-field wireless power transfer used in biomedical implants: A comprehensive review. In IET Power Electronics (Vol. 15, Issue 16, pp. 1936–1955). John Wiley and Sons Inc. https://doi.org/10.1049/pel2.12351.
  • Markov, M. S. (2007). Expanding use of pulsed electromagnetic field therapies. Electromagnetic Biology and Medicine, 26(3), 257–274. https://doi.org/10.1080/15368370701580806.
  • Markov, M. S., Ryaby, J. T., & Waldorff, E. I. (n.d.). Pulsed Electromagnetic Fields for Clinical Applications.
  • Monache, S. D., Alessandro, R., Iorio, R., Gualtieri, G., & Colonna, R. (2008). Extremely low frequency electromagnetic fields (ELF-EMFs) induce invitro angiogenesis process in human endothelial cells. Bioelectromagnetics, 29(8), 640–648. https://doi.org/10.1002/bem.20430.
  • Mustafa, S., Abbosh, A. M., & Nguyen, P. T. (2014). Modeling human head tissues using fourth-order Debye model in convolution-based three-dimensional finite-difference time-domain. IEEE Transactions on Antennas and propagation, 62(3), 1354-1361.
  • Pena-Philippides, J. C., Yang, Y., Bragina, O., Hagberg, S., Nemoto, E., & Roitbak, T. (2014). Effect of Pulsed Electromagnetic Field (PEMF) on Infarct Size and Inflammation After Cerebral Ischemia in Mice. Translational Stroke Research, 5(4), 491–500. https://doi.org/10.1007/s12975-014-0334-1.
  • Peyman, A., Rezazadeh, A. A., & Gabriel, C. (2001). Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies. Physics in Medicine & Biology, 46(6), 1617.
  • Repacholi, M. (2012). Concern that “EMF” magnetic fields from power lines cause cancer. Science of the Total Environment, 426, 454–458. https://doi.org/10.1016/j.scitotenv.2012.03.030.
  • Rubin, C. T., Donahue,’, H. J., Rubin, J. E., & Mcleod’, K. J. (1993). Optimization of Electric Field Parameters for the Control of Bone Remodeling: Exploitation of an Indigenous Mechanism for the Prevention of Osteopenia. In Journal of Bone and Mineral Research (Vol. 8, Issue 2). Mary Ann Liebert, Inc., Publishers.
  • Schwab, S. M., Androjna, C., Waldorff, E. I., Ryaby, J. T., Moore, L. R., Midura, R. J., & Zborowski, M. (2016). Mechanical Stress on Suspended Cortical Bone Sample by Low Frequency Magnetic Field. IEEE Transactions on Magnetics, 52(7). https://doi.org/10.1109/TMAG.2016.2515069.
  • Sisken, B. F. (1996). Therapeutic aspects of electromagnetic fields for soft-tissue healing. Advances in Chemistry Series, 250, 283–285. https://doi.org/10.1021/ba-1995-0250.ch015.
  • Smith, R. A. (2003). IARC handbooks of cancer prevention, volume 7: Breast cancer screening. Breast Cancer Research, 5(4). https://doi.org/10.1186/bcr616.
  • Yang, H. J., Kim, R. Y., & Hwang, S. J. (2015). Pulsed electromagnetic fields enhance bone morphogenetic protein-2 dependent-bone regeneration. Tissue Engineering - Part A, 21(19–20), 2629–2637. https://doi.org/10.1089/ten.tea.2015.0032.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyoelektronik, Mühendislik Elektromanyetiği
Bölüm Makaleler
Yazarlar

Miraç Dilruba Geyikoğlu 0000-0003-2399-4741

Yayımlanma Tarihi 15 Mart 2024
Gönderilme Tarihi 6 Temmuz 2023
Kabul Tarihi 27 Aralık 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Geyikoğlu, M. D. (2024). Sıçanlarda tüm vücut PEMF cihaz etkisi için in-silico çalışma. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(1), 313-324. https://doi.org/10.17714/gumusfenbil.1323633