Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of aggregate type on fly ash- and brick powder-based geopolymer mortar properties

Yıl 2024, , 259 - 273, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1345725

Öz

In this study the effect of aggregate type on some properties of fly ash- and waste brick powder-based geopolymers was investigated comparatively. In this context, unit weight, compressive strength, and high-temperature resistance of geopolymer mortars prepared with pumice aggregate and standard CEN sand were examined. In the preparation of mortars, the brick powder obtained by grinding waste bricks, Class F fly ash, sodium silicate and sodium hydroxide were used. A laboratory-type oven and a household microwave oven were used for curing. Oven and microwave curing were applied at 90°C for 48 hours and at 300-watt power level for 20 (for fly ash) or 30 (for brick powder) minutes, respectively. It was determined that the aggregate type significantly affects the geopolymer mortar properties. Regardless of the aluminosilicate and aggregate type, higher compressive strengths were achieved with oven curing, and the compressive strengths of the mortars produced with pumice aggregate were lower than those of the mortars prepared with CEN sand. On the other hand, microwave curing was more advantageous in terms of high-temperature resistance. Oven-cured mortars lost strength upon exposure to the high temperature, but the compressive strength of mortars subjected to the microwave curing generally increased after exposure to high temperatures.

Kaynakça

  • Al Bakri, A. M. M., Kamarudin, H., Bnhussain, M., Nizar, I. K., Rafiza, A. R. & Zarina, Y. (2012). The processing, characterization, and properties of fly ash based geopolymer concrete. Reviews on Advanced Materials Science, 30, 90-97.
  • American Society for Testing and Materials. (2018). Standard specification for concrete aggregates (ASTM Standart No. ASTM C33/C33M-18). American Society for Testing and Materials. https://www.astm.org/c0033_c0033m-18.html
  • Cheng-Yong, H., Yun-Ming, L., Abdullah M. M. A. B. & Hussin, K. (2017). Thermal resistance variations of fly ash geopolymers: foaming responses. Scientific Reports, 7, 45355. https://doi.org/10.1038/srep45355
  • Chindaprasirt, P., Rattanasak, U. & Taebuanhuad, S. (2013). Role of microwave radiation in curing the fly ash geopolymer. Advanced Powder Technology, 24, 703-707. https://dx.doi.org/10.1016/j.apt.2012.12.005
  • Dhasmana, A. & Singh, S. P. (2023). Long-term mechanical characteristics of fibre reinforced metakaolin-based geopolymer concrete: A review. Materials Today: Proceedings, 93(3), 106-119. https://doi.org/10.1016/j.matpr.2023.07.030
  • Durak, U. (2021). Ön bekleme süresi ve mikrodalga kürünün geopolimer harç numunelerin mekanik özelliklerine etkisinin incelenmesi. Ankara International Conference on Scientific Research (ss. 186-194), Ankara.
  • Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M. & van Deventer, J. S. J. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A, 269, 47-58. https://doi:10.1016/j.colsurfa.2005.06.060
  • El-Feky, M. S., Kohail, M., El-Tair, A. M. & Serag, M. I. (2020). Effect of microwave curing as compared with conventional regimes on the performance of alkali activated slag pastes. Construction and Building Materials, 233, 117268. https://doi.org/10.1016/j.conbuildmat.2019.117268
  • Erdoğan, T. Y. (2021). Beton (7. basım). ODTÜ Yayıncılık.
  • Farhan, K. Z., Johari, M. A. M. & Demirboğa, R. (2020). Assessment of important parameters involved in the synthesis of geopolymer composites: a review. Construction and Building Materials, 264, 120276. https://doi.org/10.1016/j.conbuildmat.2020.120276
  • Graytee, A., Sanjayan, J. G. & Nazari, A. (2018). Development of a high strength fly ash-based geopolymer in short time by using microwave curing. Ceramics International, 44, 8216-8222. https://doi.org/10.1016/j.ceramint.2018.02.001
  • Guan, X., Luo, W., Liu, S., Hernandez, A. G., Do, H. & Li, B. (2023). Ultra-high early strength fly ash-based geopolymer paste cured by microwave radiation. Developments in the Built Environment, 14, 100139. https://doi.org/10.1016/j.dibe.2023.100139
  • He, K-c., Guo, R-x., Ma, Q-m., Yan, F., Lin, Z-w. & Sun, Y-l. (2016). Experimental research on high temperature resistance of modified lightweight concrete after exposure to elevated temperatures. Advances in Materials Science and Engineering, 5972570. https://dx.doi.org/10.1155/2016/5972570
  • Hong, S. & Kim, H. (2019). Effects of microwave energy on fast compressive strength development of coal bottom ash-based geopolymers. Scientific Reports, 9, 15694. https://doi.org/10.1038/s41598-019-52160-2
  • Izquierdo, M., Querol, X., Davidovits, J., Antenucci, D., Nugteren, H. & Fernández-Pereira, C. (2009). Coal fly ash-slag-based geopolymers: microstructure and metal leaching. Journal of Hazardous Materials, 166, 561-566. https://doi.org/10.1016/j.jhazmat.2008.11.063
  • Kastiukas, G., Ruan, S., Liang, S. & Zhou, X. (2020). Development of precast geopolymer concrete via oven and microwave radiation curing with an environmental assessment, Journal of Cleaner Production, 255, 120290. https://doi.org/10.1016/j.jclepro.2020.120290
  • Khaleel, F., Atiş, C. D., Durak, U., İlkentapar, S. & Karahan, O. (2021). The effect of microwave curing on the strength development of Class-F fly ash-based geopolymer mortar, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 37(1), 118-129.
  • Medeiros, W. A., Parsekian, G. A., & Moreno, A. L. (2023). Residual mechanical properties of hollow concrete blocks with different aggregate types after exposure to high temperatures. Construction and Building Materials, 377, 131085. https://doi.org/10.1016/j.conbuildmat.2023.131085
  • Metekong, J. V. S., Kaze, C. R., Deutou, J. G., Venyite, P., Nana, A., Kamseu, E., Melo, U. C. & Tatietse T. T. (2021). Evaluation of performances of volcanic-ash-laterite based blended geopolymer concretes: mechanical properties and durability. Journal of Building Engineering, 34, 101935. https://doi.org/10.1016/j.jobe.2020.101935
  • Moradikhou, A. B., Esparham, A. & Avanaki, M. J. (2020). Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete. Construction and Building Materials, 251, 118965. https://doi.org/10.1016/j.conbuildmat.2020.118965
  • Nadeem, M., Ul Haq, E., Ahmed, F., Rafiq, M. A., Awan, G. H. & Zain-ul-Abdein, M. (2020). Effect of microwave curing on the construction properties of natural soil based geopolymer foam. Construction and Building Materials, 230, 117074. https://doi.org/10.1016/j.conbuildmat.2019.117074
  • Nawaz, M., Heitor, A. & Sivakumar, M. (2020). Geopolymers in construction - recent developments. Construction and Building Materials, 260, 120472. https://doi.org/10.1016/j.conbuildmat.2020.120472
  • Neville, A. M. (2011). Properties of concrete (5th edition). Pearson.
  • Payakaniti, P., Chuewangkam, N., Yensano, R., Pinitsoontorn, S. & Chindaprasirt, P. (2020). Changes in compressive strength, microstructure and magnetic properties of a high-calcium fly ash geopolymer subjected to high temperatures. Construction and Building Materials, 265, 120650. https://doi.org/10.1016/j.conbuildmat.2020.120650
  • Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., Cheeseman, C. R. & Payá, J. (2013). Properties and microstructure of alkali-activated red clay brick waste, Construction and Building Materials, 43, 98-106. https://dx.doi.org/10.1016/j.conbuildmat.2013.01.031
  • Ren, B., Zhao, Y., Bai, H., Kang, S., Zhang, T. & Song, S. (2021). Eco-friendly geopolymer prepared from solid wastes: a critical review. Chemosphere, 267, 128900. https://doi.org/10.1016/j.chemosphere.2020.128900
  • Rovnaník, P., Rovnaníková, P., Vyšvaril, M., Grzeszczyk, S. & Janowska-Renkas, E. (2018). Rheological properties and microstructure of binary waste red brick powder/metakaolin geopolymer. Construction and Building Materials, 188, 924-933. https://doi.org/10.1016/j.conbuildmat.2018.08.150
  • Shi, H., Ma, H., Tian, L., Yang, J. & Yuan, J. (2020). Effect of microwave curing on metakaolin-quartz-based geopolymer bricks. Construction and Building Materials, 258, 120354. https://doi.org/10.1016/j.conbuildmat.2020.120354
  • Shi, S., Li, H., Fabian, M., Sun, T., Grattan, K. T. V., Xu, D., Basheer, P. A. M. & Bai, Y. (2016). Alkali-activated fly ash manufactured with multi-stage microwave curing. Sustainable Construction Materials and Technologies. Fourth International Conference on Sustainable Construction Materials and Technologies (pp.1-9), Las Vegas.
  • Soares, J. C., Dias, D. P., de Carvalho, E. A. & de Azevedo, J. S. (2021). Determination of shear strength by Iosipescu (V-notch) method of metakaolin-based geopolymeric resins activated by different silicate and hydroxide combinations. Construction and Building Materials, 275, 122120. https://doi.org/10.1016/j.conbuildmat.2020.122120
  • Somaratna, J., Ravikumar, D. & Neithalath, N. (2010). Response of alkali activated fly ash mortars to microwave curing. Cement and Concrete Research, 40, 1688–1696. https://doi.org/10.1016/j.cemconres.2010.08.01
  • Sun, Y., Zhang, P., Hu, J., Liu, B., Yang, J., Liang, S., Xiao, K. & Hou, H. (2021). A review on microwave irradiation to the properties of geopolymers: mechanisms and challenges. Construction and Building Materials, 294, 123491. https://doi.org/10.1016/j.conbuildmat.2021.123491
  • Suwan, T., Paphawasit, B., Fan, M., Jitsangiam, P. & Chindaprasirt, P. (2021). Effect of microwave-assisted curing process on strength development and curing duration of cellular lightweight geopolymer mortar. Materials and Manufacturing Processes, 36(9), 1040-1048. https://doi.org/10.1080/10426914.2021.1885702
  • Tan, J., Cai, J., Huang, L., Yang, Q., Mao, M. & Li, J. (2020). Feasibility of using microwave curing to enhance the compressive strength of mixed recycled aggregate powder based geopolymer, Construction and Building Materials, 262, 120897. https://doi.org/10.1016/j.conbuildmat.2020.120897
  • Tiffo, E., Mbah, J. B. B., Belibi, P. D. B., Djobo, J. N. Y. & Elimbi, A. (2020). Physical and mechanical properties of unheated and heated kaolin-based geopolymers with partial replacement of aluminium hydroxide, Materials Chemistry and Physics, 239, 122103. https://doi.org/10.1016/j.matchemphys.2019.122103
  • Türk Standartları Enstitüsü. (2012). Yapı kireci - bölüm 2: deney yöntemleri (TSE Standart No. TS EN 459-2). Ankara, Türk Standartları Enstitüsü.
  • Tuyan, M., Andiç Çakır, Ö. & Ramyar, K. (2018). Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Composites Part B, 135, 242-252. https://dx.doi.org/10.1016/j.compositesb.2017.10.013
  • Ye, T., Xiao, J., Duan, Z. & Li, S. (2022). Geopolymers made of recycled brick and concrete powder – a critical review. Construction and Building Materials, 330, 127232. https://doi.org/10.1016/j.conbuildmat.2022.127232
  • Zhang, H., Li, L., Yuan, C., Wang, Q., Sarker, P. K. & Shi, X. (2020). Deterioration of ambient-cured and heat-cured fly ash geopolymer concrete by high temperature exposure and prediction of its residual compressive strength. Construction and Building Materials, 262, 120924. https://doi.org/10.1016/j.conbuildmat.2020.120924

Agrega türünün uçucu kül ve tuğla tozu esaslı geopolimer harç özelliklerine etkisi

Yıl 2024, , 259 - 273, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1345725

Öz

Bu çalışmada, kum türünün uçucu kül ve atık tuğla tozu esaslı geopolimerlerin bazı özellikleri üzerindeki etkisi araştırılmıştır. Bu kapsamda pomza agregası ve CEN standart kumu kullanılarak üretilen geopolimer harçların birim hacim ağırlık, basınç dayanımı ve yüksek sıcaklık dirençleri incelenmiştir. Harçların üretilmesinde, defolu tuğlaların öğütülmesi ile elde edilen tuğla tozu, F sınıfı uçucu kül, sodyum silikat ve sodyum hidroksit; harçların kürlenmesinde ise laboratuvar tipi hava dolaşımlı etüv ve ev tipi mikrodalga fırın kullanılmıştır. Etüv küründe, numuneler 48 saat boyunca 90°C’de kürlenirken mikrodalga küründe 300 watt güç seviyesinde, uçucu kül için 20 dakika, tuğla tozu için 30 dakika kürleme yapılmıştır. Alüminosilikat ve agrega türünden bağımsız olarak, etüv kürü ile daha yüksek basınç dayanımlarına ulaşıldığı, pomza agregası ile üretilen harçların basınç dayanımlarının, CEN kumu kullanılan harçlardan daha düşük olduğu belirlenmiştir. Buna karşın, yüksek sıcaklık direnci bakımından mikrodalga kürünün daha avantajlı olduğu, etüv kürü ile üretilen harçların yüksek sıcaklık etkisi ile dayanım kaybı yaşadıkları ancak mikrodalga kürü uygulanan harçların yüksek sıcaklıklara maruz kaldıktan sonra basınç dayanımlarının genel olarak yükseldiği belirlenmiştir.

Kaynakça

  • Al Bakri, A. M. M., Kamarudin, H., Bnhussain, M., Nizar, I. K., Rafiza, A. R. & Zarina, Y. (2012). The processing, characterization, and properties of fly ash based geopolymer concrete. Reviews on Advanced Materials Science, 30, 90-97.
  • American Society for Testing and Materials. (2018). Standard specification for concrete aggregates (ASTM Standart No. ASTM C33/C33M-18). American Society for Testing and Materials. https://www.astm.org/c0033_c0033m-18.html
  • Cheng-Yong, H., Yun-Ming, L., Abdullah M. M. A. B. & Hussin, K. (2017). Thermal resistance variations of fly ash geopolymers: foaming responses. Scientific Reports, 7, 45355. https://doi.org/10.1038/srep45355
  • Chindaprasirt, P., Rattanasak, U. & Taebuanhuad, S. (2013). Role of microwave radiation in curing the fly ash geopolymer. Advanced Powder Technology, 24, 703-707. https://dx.doi.org/10.1016/j.apt.2012.12.005
  • Dhasmana, A. & Singh, S. P. (2023). Long-term mechanical characteristics of fibre reinforced metakaolin-based geopolymer concrete: A review. Materials Today: Proceedings, 93(3), 106-119. https://doi.org/10.1016/j.matpr.2023.07.030
  • Durak, U. (2021). Ön bekleme süresi ve mikrodalga kürünün geopolimer harç numunelerin mekanik özelliklerine etkisinin incelenmesi. Ankara International Conference on Scientific Research (ss. 186-194), Ankara.
  • Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M. & van Deventer, J. S. J. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A, 269, 47-58. https://doi:10.1016/j.colsurfa.2005.06.060
  • El-Feky, M. S., Kohail, M., El-Tair, A. M. & Serag, M. I. (2020). Effect of microwave curing as compared with conventional regimes on the performance of alkali activated slag pastes. Construction and Building Materials, 233, 117268. https://doi.org/10.1016/j.conbuildmat.2019.117268
  • Erdoğan, T. Y. (2021). Beton (7. basım). ODTÜ Yayıncılık.
  • Farhan, K. Z., Johari, M. A. M. & Demirboğa, R. (2020). Assessment of important parameters involved in the synthesis of geopolymer composites: a review. Construction and Building Materials, 264, 120276. https://doi.org/10.1016/j.conbuildmat.2020.120276
  • Graytee, A., Sanjayan, J. G. & Nazari, A. (2018). Development of a high strength fly ash-based geopolymer in short time by using microwave curing. Ceramics International, 44, 8216-8222. https://doi.org/10.1016/j.ceramint.2018.02.001
  • Guan, X., Luo, W., Liu, S., Hernandez, A. G., Do, H. & Li, B. (2023). Ultra-high early strength fly ash-based geopolymer paste cured by microwave radiation. Developments in the Built Environment, 14, 100139. https://doi.org/10.1016/j.dibe.2023.100139
  • He, K-c., Guo, R-x., Ma, Q-m., Yan, F., Lin, Z-w. & Sun, Y-l. (2016). Experimental research on high temperature resistance of modified lightweight concrete after exposure to elevated temperatures. Advances in Materials Science and Engineering, 5972570. https://dx.doi.org/10.1155/2016/5972570
  • Hong, S. & Kim, H. (2019). Effects of microwave energy on fast compressive strength development of coal bottom ash-based geopolymers. Scientific Reports, 9, 15694. https://doi.org/10.1038/s41598-019-52160-2
  • Izquierdo, M., Querol, X., Davidovits, J., Antenucci, D., Nugteren, H. & Fernández-Pereira, C. (2009). Coal fly ash-slag-based geopolymers: microstructure and metal leaching. Journal of Hazardous Materials, 166, 561-566. https://doi.org/10.1016/j.jhazmat.2008.11.063
  • Kastiukas, G., Ruan, S., Liang, S. & Zhou, X. (2020). Development of precast geopolymer concrete via oven and microwave radiation curing with an environmental assessment, Journal of Cleaner Production, 255, 120290. https://doi.org/10.1016/j.jclepro.2020.120290
  • Khaleel, F., Atiş, C. D., Durak, U., İlkentapar, S. & Karahan, O. (2021). The effect of microwave curing on the strength development of Class-F fly ash-based geopolymer mortar, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 37(1), 118-129.
  • Medeiros, W. A., Parsekian, G. A., & Moreno, A. L. (2023). Residual mechanical properties of hollow concrete blocks with different aggregate types after exposure to high temperatures. Construction and Building Materials, 377, 131085. https://doi.org/10.1016/j.conbuildmat.2023.131085
  • Metekong, J. V. S., Kaze, C. R., Deutou, J. G., Venyite, P., Nana, A., Kamseu, E., Melo, U. C. & Tatietse T. T. (2021). Evaluation of performances of volcanic-ash-laterite based blended geopolymer concretes: mechanical properties and durability. Journal of Building Engineering, 34, 101935. https://doi.org/10.1016/j.jobe.2020.101935
  • Moradikhou, A. B., Esparham, A. & Avanaki, M. J. (2020). Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete. Construction and Building Materials, 251, 118965. https://doi.org/10.1016/j.conbuildmat.2020.118965
  • Nadeem, M., Ul Haq, E., Ahmed, F., Rafiq, M. A., Awan, G. H. & Zain-ul-Abdein, M. (2020). Effect of microwave curing on the construction properties of natural soil based geopolymer foam. Construction and Building Materials, 230, 117074. https://doi.org/10.1016/j.conbuildmat.2019.117074
  • Nawaz, M., Heitor, A. & Sivakumar, M. (2020). Geopolymers in construction - recent developments. Construction and Building Materials, 260, 120472. https://doi.org/10.1016/j.conbuildmat.2020.120472
  • Neville, A. M. (2011). Properties of concrete (5th edition). Pearson.
  • Payakaniti, P., Chuewangkam, N., Yensano, R., Pinitsoontorn, S. & Chindaprasirt, P. (2020). Changes in compressive strength, microstructure and magnetic properties of a high-calcium fly ash geopolymer subjected to high temperatures. Construction and Building Materials, 265, 120650. https://doi.org/10.1016/j.conbuildmat.2020.120650
  • Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., Cheeseman, C. R. & Payá, J. (2013). Properties and microstructure of alkali-activated red clay brick waste, Construction and Building Materials, 43, 98-106. https://dx.doi.org/10.1016/j.conbuildmat.2013.01.031
  • Ren, B., Zhao, Y., Bai, H., Kang, S., Zhang, T. & Song, S. (2021). Eco-friendly geopolymer prepared from solid wastes: a critical review. Chemosphere, 267, 128900. https://doi.org/10.1016/j.chemosphere.2020.128900
  • Rovnaník, P., Rovnaníková, P., Vyšvaril, M., Grzeszczyk, S. & Janowska-Renkas, E. (2018). Rheological properties and microstructure of binary waste red brick powder/metakaolin geopolymer. Construction and Building Materials, 188, 924-933. https://doi.org/10.1016/j.conbuildmat.2018.08.150
  • Shi, H., Ma, H., Tian, L., Yang, J. & Yuan, J. (2020). Effect of microwave curing on metakaolin-quartz-based geopolymer bricks. Construction and Building Materials, 258, 120354. https://doi.org/10.1016/j.conbuildmat.2020.120354
  • Shi, S., Li, H., Fabian, M., Sun, T., Grattan, K. T. V., Xu, D., Basheer, P. A. M. & Bai, Y. (2016). Alkali-activated fly ash manufactured with multi-stage microwave curing. Sustainable Construction Materials and Technologies. Fourth International Conference on Sustainable Construction Materials and Technologies (pp.1-9), Las Vegas.
  • Soares, J. C., Dias, D. P., de Carvalho, E. A. & de Azevedo, J. S. (2021). Determination of shear strength by Iosipescu (V-notch) method of metakaolin-based geopolymeric resins activated by different silicate and hydroxide combinations. Construction and Building Materials, 275, 122120. https://doi.org/10.1016/j.conbuildmat.2020.122120
  • Somaratna, J., Ravikumar, D. & Neithalath, N. (2010). Response of alkali activated fly ash mortars to microwave curing. Cement and Concrete Research, 40, 1688–1696. https://doi.org/10.1016/j.cemconres.2010.08.01
  • Sun, Y., Zhang, P., Hu, J., Liu, B., Yang, J., Liang, S., Xiao, K. & Hou, H. (2021). A review on microwave irradiation to the properties of geopolymers: mechanisms and challenges. Construction and Building Materials, 294, 123491. https://doi.org/10.1016/j.conbuildmat.2021.123491
  • Suwan, T., Paphawasit, B., Fan, M., Jitsangiam, P. & Chindaprasirt, P. (2021). Effect of microwave-assisted curing process on strength development and curing duration of cellular lightweight geopolymer mortar. Materials and Manufacturing Processes, 36(9), 1040-1048. https://doi.org/10.1080/10426914.2021.1885702
  • Tan, J., Cai, J., Huang, L., Yang, Q., Mao, M. & Li, J. (2020). Feasibility of using microwave curing to enhance the compressive strength of mixed recycled aggregate powder based geopolymer, Construction and Building Materials, 262, 120897. https://doi.org/10.1016/j.conbuildmat.2020.120897
  • Tiffo, E., Mbah, J. B. B., Belibi, P. D. B., Djobo, J. N. Y. & Elimbi, A. (2020). Physical and mechanical properties of unheated and heated kaolin-based geopolymers with partial replacement of aluminium hydroxide, Materials Chemistry and Physics, 239, 122103. https://doi.org/10.1016/j.matchemphys.2019.122103
  • Türk Standartları Enstitüsü. (2012). Yapı kireci - bölüm 2: deney yöntemleri (TSE Standart No. TS EN 459-2). Ankara, Türk Standartları Enstitüsü.
  • Tuyan, M., Andiç Çakır, Ö. & Ramyar, K. (2018). Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Composites Part B, 135, 242-252. https://dx.doi.org/10.1016/j.compositesb.2017.10.013
  • Ye, T., Xiao, J., Duan, Z. & Li, S. (2022). Geopolymers made of recycled brick and concrete powder – a critical review. Construction and Building Materials, 330, 127232. https://doi.org/10.1016/j.conbuildmat.2022.127232
  • Zhang, H., Li, L., Yuan, C., Wang, Q., Sarker, P. K. & Shi, X. (2020). Deterioration of ambient-cured and heat-cured fly ash geopolymer concrete by high temperature exposure and prediction of its residual compressive strength. Construction and Building Materials, 262, 120924. https://doi.org/10.1016/j.conbuildmat.2020.120924
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm Makaleler
Yazarlar

Merve Tokdemir 0000-0002-6447-9909

Kambiz Ramyar 0000-0003-2200-2691

Adil Gültekin 0000-0002-5267-5312

Yayımlanma Tarihi 15 Mart 2024
Gönderilme Tarihi 18 Ağustos 2023
Kabul Tarihi 27 Aralık 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Tokdemir, M., Ramyar, K., & Gültekin, A. (2024). Agrega türünün uçucu kül ve tuğla tozu esaslı geopolimer harç özelliklerine etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(1), 259-273. https://doi.org/10.17714/gumusfenbil.1345725